Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.34 (2002)
  6. Symmetry and monotonicity results for positive solutions of p-Laplace systems
 
  • Details
  • Metrics
Options
Symmetry and monotonicity results for positive solutions of p-Laplace systems
Azizieh, Céline
2002
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4197
  • Article

Abstract
In this paper, we extend to a system of the type \[ \begin{cases} \begin{array}{c} -\Delta_{p_{1}}u=f\left(v\right)\quad in\,\Omega,\quad u>0\quad in\,\Omega\quad u=0\quad on\,\partial\Omega,\\ -\Delta_{p_{2}}v=g\left(u\right)\quad in\,\Omega,\quad v>0\quad in\,\Omega\quad v=0\quad on\,\partial\Omega, \end{array}\end{cases} \] where $\Omega\subset\mathbb{R}^{N}$ is bounded, the monotonicity and simmetry results of Damascelli and Pacella obtained in $\left[5\right]$ in the case of a scalar p-Laplace equation with 1 < p < 2. For this purpose, we use the moving hyperplanes method and we suppose that $f,g\::\:\mathbb{R}\rightarrow\mathbb{R}^{+}$ are increasing on $\mathbb{R}^{+}$ and locally Lipschitz continuous on $\mathbb{R}$ and p$_{1},$ p$_{2}$ $\epsilon$ (1, 2) or p$_{1}\:\epsilon\left(1,\infty\right),$ p$_{2}$=2
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
34 (2002)
Subjects
  • p-Laplacian

  • symmetry results

  • systems of PDE's

Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Céline Azizieh, "Symmetry and monotonicity results for positive solutions of p-Laplace systems ", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 34 (2002), pp. 67-98.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

AziziehRendMat34.pdf

Format

Adobe PDF

Size

325.21 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback