Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4197
DC FieldValueLanguage
dc.contributor.authorAzizieh, Céline-
dc.date.accessioned2011-03-31T06:45:41Z-
dc.date.available2011-03-31T06:45:41Z-
dc.date.issued2002-
dc.identifier.citationCéline Azizieh, "Symmetry and monotonicity results for positive solutions of p-Laplace systems ", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 34 (2002), pp. 67-98.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/4197-
dc.description.abstractIn this paper, we extend to a system of the type $\begin{cases} \begin{array}{c} -\Delta_{p_{1}}u=f\left(v\right)\quad in\,\Omega,\quad u>0\quad in\,\Omega\quad u=0\quad on\,\partial\Omega,\\ -\Delta_{p_{2}}v=g\left(u\right)\quad in\,\Omega,\quad v>0\quad in\,\Omega\quad v=0\quad on\,\partial\Omega, \end{array}\end{cases}$ where $\Omega\subset\mathbb{R}^{N}$ is bounded, the monotonicity and simmetry results of Damascelli and Pacella obtained in $\left[5\right]$ in the case of a scalar p-Laplace equation with 1 < p < 2. For this purpose, we use the moving hyperplanes method and we suppose that $f,g\::\:\mathbb{R}\rightarrow\mathbb{R}^{+}$ are increasing on $\mathbb{R}^{+}$ and locally Lipschitz continuous on $\mathbb{R}$ and p$_{1},$ p$_{2}$ $\epsilon$ (1, 2) or p$_{1}\:\epsilon\left(1,\infty\right),$ p$_{2}$=2-
dc.language.isoenit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Scienze Matematicheit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries34 (2002)it_IT
dc.subjectp-Laplacianit_IT
dc.subjectsymmetry resultsit_IT
dc.subjectsystems of PDE'sit_IT
dc.titleSymmetry and monotonicity results for positive solutions of p-Laplace systemsit_IT
dc.typeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.34 (2002)
###### Files in This Item:
File Description SizeFormat

CORE Recommender

#### Page view(s) 50

703
checked on Dec 4, 2022