Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4197
DC FieldValueLanguage
dc.contributor.authorAzizieh, Céline-
dc.date.accessioned2011-03-31T06:45:41Z-
dc.date.available2011-03-31T06:45:41Z-
dc.date.issued2002-
dc.identifier.citationCéline Azizieh, "Symmetry and monotonicity results for positive solutions of p-Laplace systems ", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 34 (2002), pp. 67-98.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/4197-
dc.description.abstractIn this paper, we extend to a system of the type \[ \begin{cases} \begin{array}{c} -\Delta_{p_{1}}u=f\left(v\right)\quad in\,\Omega,\quad u>0\quad in\,\Omega\quad u=0\quad on\,\partial\Omega,\\ -\Delta_{p_{2}}v=g\left(u\right)\quad in\,\Omega,\quad v>0\quad in\,\Omega\quad v=0\quad on\,\partial\Omega, \end{array}\end{cases} \] where $\Omega\subset\mathbb{R}^{N}$ is bounded, the monotonicity and simmetry results of Damascelli and Pacella obtained in $\left[5\right]$ in the case of a scalar p-Laplace equation with 1 < p < 2. For this purpose, we use the moving hyperplanes method and we suppose that $f,g\::\:\mathbb{R}\rightarrow\mathbb{R}^{+}$ are increasing on $\mathbb{R}^{+}$ and locally Lipschitz continuous on $\mathbb{R}$ and p$_{1},$ p$_{2}$ $\epsilon$ (1, 2) or p$_{1}\:\epsilon\left(1,\infty\right),$ p$_{2}$=2-
dc.language.isoenit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Scienze Matematicheit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries34 (2002)it_IT
dc.subjectp-Laplacianit_IT
dc.subjectsymmetry resultsit_IT
dc.subjectsystems of PDE'sit_IT
dc.titleSymmetry and monotonicity results for positive solutions of p-Laplace systemsit_IT
dc.typeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.34 (2002)
Files in This Item:
File Description SizeFormat
AziziehRendMat34.pdf325.21 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

703
checked on Dec 4, 2022

Download(s) 50

332
checked on Dec 4, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.