Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4200
Title: Pointwise versions of solutions to Cauchy problems in $L^p$-spaces
Authors: Desch, Wolfgang
Homan, Krista W.
Issue Date: 2002
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: W. Desch and K. W. Homan, "Pointwise versions of solutions to Cauchy problems in $L^p$-spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 34 (2002), pp. 121-142.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
34 (2002)
Abstract: We consider a cauchy problem \[ \begin{array}{cc} \frac{\partial}{\partial t}\varphi\left(t,\omega\right)=\left(\mathcal{A\varphi\left(\mathit{t,\cdot}\right)}\right)\left(\omega\right),t>0 & \omega\epsilon\Omega\\ \varphi\left(0,\omega\right)=\varphi_{0}\left(\omega\right), & \omega\epsilon\Omega \end{array} \] and assume that it can be solved by a strongly continuous semigroup on a Banach space valued function space $L^{p}\left(\Omega,X\right)$. For fixed t > 0 the solution $\varphi\left(t,\omega\right)$ is only defined almost everywhere on $\Omega$. Therefore it is not obvious what kind of regularity of $t\mapsto\varphi\left(t,\omega\right)$ has for fixed $\omega\;\epsilon\;\Omega$. We show that if the semigroup is analityc, then there exists a version of $\varphi\left(t,\cdot\right)$ such that for almost every $\omega\;\epsilon\;\Omega$, $t\mapsto\varphi\left(t,\omega\right)$ is analityc in $\left(0,\infty\right)$.
URI: http://hdl.handle.net/10077/4200
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.34 (2002)

Files in This Item:
File Description SizeFormat
DeschHomanRendMat34.pdf249.69 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

876
checked on Nov 15, 2018

Download(s)

281
checked on Nov 15, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.