Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/4200
Title: | Pointwise versions of solutions to Cauchy problems in $L^p$-spaces | Authors: | Desch, Wolfgang Homan, Krista W. |
Issue Date: | 2002 | Publisher: | Università degli Studi di Trieste. Dipartimento di Scienze Matematiche | Source: | W. Desch and K. W. Homan, "Pointwise versions of solutions to Cauchy problems in $L^p$-spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 34 (2002), pp. 121-142. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 34 (2002) |
Abstract: | We consider a cauchy problem \[ \begin{array}{cc} \frac{\partial}{\partial t}\varphi\left(t,\omega\right)=\left(\mathcal{A\varphi\left(\mathit{t,\cdot}\right)}\right)\left(\omega\right),t>0 & \omega\epsilon\Omega\\ \varphi\left(0,\omega\right)=\varphi_{0}\left(\omega\right), & \omega\epsilon\Omega \end{array} \] and assume that it can be solved by a strongly continuous semigroup on a Banach space valued function space $L^{p}\left(\Omega,X\right)$. For fixed t > 0 the solution $\varphi\left(t,\omega\right)$ is only defined almost everywhere on $\Omega$. Therefore it is not obvious what kind of regularity of $t\mapsto\varphi\left(t,\omega\right)$ has for fixed $\omega\;\epsilon\;\Omega$. We show that if the semigroup is analityc, then there exists a version of $\varphi\left(t,\cdot\right)$ such that for almost every $\omega\;\epsilon\;\Omega$, $t\mapsto\varphi\left(t,\omega\right)$ is analityc in $\left(0,\infty\right)$. |
Type: | Article | URI: | http://hdl.handle.net/10077/4200 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.34 (2002) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DeschHomanRendMat34.pdf | 249.69 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 20
1,014
checked on Jan 27, 2023
Download(s) 50
367
checked on Jan 27, 2023
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.