Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/4207
Title: | Twistor methods in conformal almost symplectic geometry | Authors: | Nannicini, Antonella | Issue Date: | 2002 | Publisher: | Università degli Studi di Trieste. Dipartimento di Scienze Matematiche | Source: | Antonella Nannicini, "Twistor methods in conformal almost symplectic geometry", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 34 (2002), pp. 215-234. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 34 (2002) |
Abstract: | Given a 2n-dimensional almost symplectic manifold $\left(M,\omega\right)$, we consider the conformal class of $\omega$ and to each symplectic connection, $\nabla$, we associate, in a natural way, a $e^{2\sigma}\omega$-symplectic connection, $\nabla^{\sigma}$. We prove that the twistor bundle $Z\left(M,\omega\right):=\frac{P\left(M,Sp\left(2n\right)\right)}{U(n)}$, with its canonical almost complex structure induced by $\nabla$, is an invariant of the conformal class of $\left(\omega,\nabla\right)$. Then we study the interplay between conformal properties of $\left(M,\omega\right)$ and complex properties of $Z\left(M,\omega\right)$, passing trough the existence of special symplectic connections. Finally we prove that, in the case of a special K$\ddot{\textrm{a}}$hler manifold, the section of $Z\left(M,\omega\right)$ defined by the complex structure of M is an almost complex submanifold with respect to a certain almost complex structure on $Z\left(M,\omega\right)$. |
Type: | Article | URI: | http://hdl.handle.net/10077/4207 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.34 (2002) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NanniciniRendMat34.pdf | 267.14 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 20
1,133
checked on Jan 27, 2023
Download(s) 50
375
checked on Jan 27, 2023
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.