Please use this identifier to cite or link to this item:
Title: Extensions of Asymmetric Norms to Linear Spaces
Authors: Garcìa-Raffi, L.M.
Romaguera, S.
Sánchez Pérez, E.A.
Keywords: asymmetric normsemilinear spaceextension
Issue Date: 2001
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: L.M. García-Raffi, S. Romaguera and E. A. Sánchez Pérez, "Extensions of Asymmetric Norms to Linear Spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 33 (2001), pp. 113-125.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
33 (2001)
Abstract: Let M be a subset of a (real) linear space that is closed with respect to the sum of vectors and the product by nonnegative scalars. An asymmetric seminorm on M is a nonnegative and subbaditive positively homogeneous function q defined on M. Moreover, q is an asymmetric norm if in addition for every non zero element x such that -x belongs to M, q(x) or q(-x) are different from zero. Consider the linear expansion X of M. In this paper we characterize when (M,q) can be extended to an asymmetric normed linear space $(X,q^*)$, i.e. when there exists an asymmetric norm $q^*$ on X such that $q^*\midM = q$. As an application we study these extensions in the case of subsets of normed lattices.
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.33 (2001)

Files in This Item:
File Description SizeFormat 
Garcia-RaffiRomagueraSanchezPerezRendMat33.pdf196.85 kBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Oct 15, 2018


checked on Oct 15, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.