Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4225
DC FieldValueLanguage
dc.contributor.authorEl Kinani, A.-
dc.date.accessioned2011-04-01T12:26:55Z-
dc.date.available2011-04-01T12:26:55Z-
dc.date.issued2001-
dc.identifier.citationA. El Kinani, "A Note on Harmonic Calculus in $m$-convex Algebras", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 33 (2001), pp. 105-112.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/4225-
dc.description.abstractWe prove a version of the maximum modulus principle, for harmonic vector valued functions, in complete locally m-convex $Q--\ast--algebras$. This is used to generalize som extended versions of von Neumann's inequality.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Scienze Matematicheit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries33 (2001)it_IT
dc.subjectmaximum modulus principleit_IT
dc.subjectharmonic functional calculusit_IT
dc.subjectm-convex Q-algebrait_IT
dc.subjecthermitian algebrait_IT
dc.titleA Note on Harmonic Calculus in $m$-convex Algebrasit_IT
dc.typeArticle-
dc.subject.msc46K99it_IT
dc.subject.msc46H30it_IT
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.33 (2001)
Files in This Item:
File Description SizeFormat
KinaniRendMat33.pdf172.73 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

816
checked on Mar 28, 2023

Download(s) 50

284
checked on Mar 28, 2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.