Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4230
Title: Singular semilinear elliptic equations in the half-space
Authors: Tintarev, Kyril
Keywords: singular elliptic operatorssemilinear elliptic equationscritical exponentconvergenceconcentration compactness
Issue Date: 2001
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Kyril Tintarev, "Singular semilinear elliptic equations in the half-space", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 33 (2001), pp. 327-337.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
33 (2001)
Abstract: 
We show that equation $x_{N}^{q}\Delta u+u^{p-1}=0$ on the half-space
$Y=\mathbf{R}^{N-1}\times\left(0,\infty\right)$ and on some of its
subsets has a ground state solution for $q=N-\frac{p\left(N-2\right)}{2},\; p\;\epsilon\left(2,2*\right)$.
For N $\geq$ 3 the end point cases p=2 and p=2{*} correspond to eh
Hardy inequality and the limit exponent Sobolev inequality respectively.
For N=2 the problem can be interpreted in terms of Laplace-Beltrami
operator on the hyperbolic half-plane.
Type: Article
URI: http://hdl.handle.net/10077/4230
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.33 (2001)

Files in This Item:
File Description SizeFormat
TintarevRendMat33.pdf202.17 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

725
checked on Feb 6, 2023

Download(s) 50

392
checked on Feb 6, 2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.