Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4247
Title: Genus Reducing Knots in 3-Manifolds
Authors: Rieck, Yo’av
Issue Date: 2001
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Yo’av Rieck, "Genus reducing knots in 3-manifolds", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.1, pp. 317–331.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 suppl. 1 (2001)
Abstract: A genus reducing knot is a knot that has infinitely many surgeries after which the Heegaard genus of the manifold reduces. We study certain aspects of this question, in particular solving it for totally orientable Seifert Fibered Spaces, where we find examples of manifolds of arbitrarily high genus containing no such knot.
URI: http://hdl.handle.net/10077/4247
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2001) s1

Files in This Item:
File Description SizeFormat 
RieckRendMat32s.pdf130.33 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

486
checked on Oct 17, 2018

Download(s)

323
checked on Oct 17, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.