Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4248
Title: Manifold Spines and Hyperbolicity Equations
Authors: Ruini, Beatrice
Spaggiari, Fulvia
Keywords: 3-manifoldspecial spineo-graphgluinghyperbolicity equations
Issue Date: 2001
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Beatrice Ruini and Fulvia Spaggiari, "Manifold spines and hyperbolicity equations", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.1, pp. 333–374.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 suppl. 1 (2001)
Abstract: 
We give a combinatorial representation of compact
connected orientable 3-dimensional manifolds with boundary and
their special spines by a class of graphs with extrastructure which
are strictly related to o-graphs defined and studied in [3] and [4].
Then we describe a simple algorithm for constructing the boundary of these manifolds by using a list of 6-tuples of non-negative
integers. Finally we discuss some combinatorial methods for determining the hyperbolicity equations. Examples of hyperbolic 3-
manifolds of low complexity illustrate in particular cases the constructions and algorithms presented in the paper.
Type: Article
URI: http://hdl.handle.net/10077/4248
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2001) s1

Files in This Item:
File Description SizeFormat
RuiniSpaggiariRendMat32s.pdf393.7 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 20

898
checked on Sep 26, 2022

Download(s) 50

525
checked on Sep 26, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.