Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4259
Title: Decomposition of some hypergeometric polynomials with respect to the cyclic group of order $n$
Authors: Ben Cheikh, Youssèf
Keywords: hypergeometric functionsBrafman polynomialsSrivastava Panda plynomialsDecomposition with respect to a cyclic group
Issue Date: 2000
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Youssèf Ben Cheikh, "Decomposition of some hypergeometric polynomials with respect to the cyclic group of order $n$", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2000), pp. 103-121.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 (2000)
Abstract: 
Let $\left\{ P_{m}\right\} _{m\geq0}$ be a sequence of polynomials
with complex coefficients and let n be an arbitrary positive integer.
The components with respect to the cyclic group of order n of the
polynomial $P_{m},m=0,1,...,$ are given by:
\[
\left(P_{m}\right)_{\left[n,k\right]}\left(z\right)=\frac{1}{n}\overset{n-1}{\overset{\sum}{l=0}}\;\omega_{n}^{-kl}P_{m}\left(\omega_{n}^{l}z\right)\:,\quad k=0,1,...,n-1\;,
\]
where $\omega_{n}=exp\left(\frac{2i\pi}{n}\right)$. In this paper,
we consider two class of hypergeometric polynomials, the Brafman polynomials
and the Srivastava-Panda polynomials. For the components of these
polynomials, we establish hypergeometric representations, differential
equations and generating functions.
Type: Article
URI: http://hdl.handle.net/10077/4259
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2000)

Files in This Item:
File Description SizeFormat
BenCheikhRendMat32.pdf268.92 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

679
Last Week
10
Last month
checked on Sep 21, 2021

Download(s) 20

258
checked on Sep 21, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.