Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4260
Title: Existence and uniqueness of periodic solutions for a quasilinear parabolic problem
Authors: Badii, Maurizio
Issue Date: 2000
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Maurizio Badii, "Existence and uniqueness of periodic solutions for a quasilinear parabolic problem", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2000), pp. 123-138.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 (2000)
Abstract: 
We are concerned with the existence and uniqueness of
the nonnegative periodic weak solution to a quasilinear parabolic
problem of degenerate type, which describes a mathematical model
in petroleum engineering. The existence of periodic solutions is
established by means of the Schauder fixed point Theorem applied
to the Poincaré map. Instead, the uniqueness of the periodic
solution is proved under the assumption that $b(\varphi^-1)$ is Hölder
continuous of order 1/2, adapting a technique utilized in the study
of nonlinear hyperbolic equations.
Type: Article
URI: http://hdl.handle.net/10077/4260
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2000)

Files in This Item:
File Description SizeFormat
BadiiRendMat32.pdf209.24 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 20

887
Last Week
10
Last month
checked on Sep 22, 2021

Download(s) 50

246
checked on Sep 22, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.