Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2000)
  6. Relaxed parabolic problems
 
  • Details
  • Metrics
Options

Relaxed parabolic problems

Smolka, Maciej
2000
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4262
  • Article

Abstract
Let $G_{n}$ be a sequence of open subsets of a given open and bounded $\Omega\subset\mathbb{R}^{N}$. We study the asymptotic behaviour of the solutions of parabolic equations $u_{n}'+Au_{n}=f_{n}\:\textrm{on}\: G_{n}$. Assuming that the right-hand sides $f_{n}$ and the initial conditions converge in a proper way we find the form of the limit problem without any additional hypothesis on $G_{n}$. Our method is based on the notion of elliptic $\gamma^{A}$-convergence.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 (2000)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Maciej Smolka, "Relaxed parabolic problems", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2000), pp. 147-171.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

SmolkaRendMat32.pdf

Format

Adobe PDF

Size

261.44 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback