Options
A Result about Selectors in non-Archimedean Spaces
Artico, Giuliano
Marconi, Umberto
2001
Abstract
A sort of strong completeness property for subsets of a non-Archimedean
space is defi{}ned. On the subsets which satisfy this property there
exists a Vietoris continuous selector. The set of discrete closed
subsets of $\mathbb{R}$ has a continuous selector when it is equipped
with the Vietoris topology induced by the Michael line. Some properties
of the tree of a non-Archimedean space are used.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 (2001) suppl.2
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Giuliano Artico and Umberto Marconi, "A Result about Selectors in non-Archimedean Spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.2, pp. 1–7.
Languages
en
File(s)