Please use this identifier to cite or link to this item:
Title: Dynamical Systems from Uniform Completions
Authors: Garibay, F.
Sanchis, M.
Vera, R.
Keywords: uniform completioncompactificationdynamical systemminimalitytransitivity
Issue Date: 2001
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: F. Garibay, M. Sanchis and R. Vera, "Dynamical Systems from Uniform Completions", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.2, pp. 47–57.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 (2001) suppl.2
Abstract: Let $\left(X,\mathcal{U}\right)$ be a compact uniform space, $\sum$ the set of natural numbers or the integers, $\varphi\;:\; X\;\longrightarrow\; X$ a continuous function or a homeomorphism. Given the dynamical system $\left(X,\varphi,\sum\right)$, an extension $\left(K,\widehat{\varphi,}\sum\right)$, can be constructed by letting K be the uniform completion of $\left(X,\mathcal{V}\right)$, where $\mathcal{V}$ is a totally bounded uniformity fi{}ner than $\mathcal{U}$. If D$_{f}$ means for the set \[ \left\{ x\:\epsilon\: X\:\mid\: f\::(X,\mathcal{U})\longrightarrow\mathbb{C}\; is\; discontinuous\; at\; x\right\} , \] we prove that, if C(K) contains a dense subset E which contains no characteristic functions of singletons and such that, for each $f\epsilon E$ , there exists a fi{}nite subset F of D$_{f}$ with $D_{f}\backslash F$ discrete (in $\left(X,\mathcal{U}\right)$), then $\left(K,\widehat{\varphi,}\sum\right)$ inherits the properties of minimality and topological transitivity from $\left(X,\varphi,\sum\right)$. Several open questions are posed.
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2001) s2

Files in This Item:
File Description SizeFormat 
06-garibay.pdf127.57 kBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Oct 19, 2018


checked on Oct 19, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.