Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/4287
Title: | Unknotting Numbers are not Realized in Minimal Projections for a Class of Rational Knots | Authors: | Garity, Dennis J. | Issue Date: | 2001 | Publisher: | Università degli Studi di Trieste. Dipartimento di Scienze Matematiche | Source: | Dennis J. Garity, "Unknotting Numbers are not Realized in Minimal Projections for a Class of Rational Knots", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.2, pp. 59–72. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 32 (2001) suppl.2 |
Abstract: | In previous results, Bleiler and Nakanishi produced an example of a knot where the unknotting number was not realized in a minimal projection of the knot. Bernhard generalied this example to an infi{}nite class of examples with Conway notation $\left(2j+1,1,2j\right)$ with j $\geq$ 2. In this paper we examine the entire class of knots given in Conway notation by (2j + 1, 2k + 1, 2j) where j $\geq$ 1 and k $\geq$ 0 and we determine that a large class of knots of this form have the unknotting number not realized in a minimal projection. We also produce an infi{}nite class of two component links with unknotting number gap arbitrarily large. |
Type: | Article | URI: | http://hdl.handle.net/10077/4287 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2001) s2 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
07-garity.pdf | 153.02 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
797
checked on Jul 5, 2022
Download(s) 50
854
checked on Jul 5, 2022
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.