Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4321
Title: A note on Sylvester's problem for random polytopes in a convex body
Authors: Campi, Stefano
Colesanti, Andrea
Gronchi, Paolo
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: S. Campi, A. Colesanti and P. Gronchi, "A note on Sylvester's problem for random polytopes in a convex body", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 31 (1999), pp. 79-94.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
31 (1999)
Abstract: For any d-dimensional convex body K of unit volume, d$\geq$2, let M$_{r}$(K; n), r $\geq$ l, n$\geq$ d+ l, be the r-th order moment of the volume of the convex hull of n random points from K. The paper deals with the problem of determining maximizers of M$_{r}$ ( K; n) in the class of all d-dimensional convex bodies of unit volume. A method for selecting possible solutions, which is based on special continuous movements of convex bodies, is presented. The results obtained by this method support the conjecture that, for every r and n, the only maximizers of M$_{r}$(K; n) are simplices.
URI: http://hdl.handle.net/10077/4321
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.31 (1999)

Files in This Item:
File Description SizeFormat 
CampiColesantiGronchiRendMat31.pdf231.53 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

877
checked on Feb 20, 2018

Download(s)

496
checked on Feb 20, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.