Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4339
Title: Old and new results on quasi-uniform extension
Authors: Császár, Ákos
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Á. Császár, "Old and new results on quasi-uniform extension", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1999) suppl., pp. 75-85.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
30 (1999) suppl.
Abstract: According to $\left[17\right]$ or $\left[12\right]$, $\mathcal{U}$ is a quasi-uniformity on a set X if it's a filter on $X\times X$, the diagonal $\Delta=\left\{ \left(x,x\right):x\epsilon X\right\} \subset U$ for U $\epsilon\; U$ (i.e. $\mathcal{U}$ is composed of entourages on X), and, for each U $\epsilon\;\mathcal{U}$, there is U' $\epsilon\;\mathcal{U}$ such that U'$^{2}$=U' o U'=$\left\{ \left(x,z\right):\exists y\;\textrm{with}\;\left(x,y\right),\left(y,z\right)\epsilon U'\right\} \subset U.$ The restriction $\mathcal{U}\mid X_{0}$ to $X_{0}\subset X$ of the quasi-uniformity $\mathcal{U}$ on X is composed of the sets $\mathcal{U}\mid X_{0}=U\cap\left(X_{0}\times X_{0}\right)$ for U $\epsilon\; U$; it is a quasi-uniformity on X$_{0}$. Let Y $\supset$X, $\mathcal{U}$ be a quasi-uniformity on Y; $\mathcal{W}$ is an extension of the quasi-uniformity $\mathcal{U}$ on X if $\mathcal{W}\mid X\mathcal{=U}$. The purpose of the present paper is to give a survey on results, due mainly to Hungarian topologists, concerning extensions of quasi-uniformities.
URI: http://hdl.handle.net/10077/4339
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.30 (1999) s.

Files in This Item:
File Description SizeFormat
CsaszarRendMat30s.pdf201.86 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

536
checked on Apr 10, 2019

Download(s)

294
checked on Apr 10, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.