Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4343
Title: Fuzziness in Chang's fuzzy topological spaces
Authors: Gregori, Valentín
Vidal, Anna
Keywords: fuzzy topologygradation of opennessfuzzy point
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Valentín Gregori and Anna Vidal, "Fuzziness in Chang's fuzzy topological spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1999) suppl., pp. 111-121.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
30 (1999) suppl.
Abstract: 
It is known that fuzziness within the concept of openness of a fuzzy
set in a Chang's fuzzy topological space (fts) is absent. In this
paper we introduce a gradation of openness for the open sets of a
Chang jts (X, $\mathcal{T}$) by means of a map $\sigma\;:\; I^{x}\longrightarrow I\left(I=\left[0,1\right]\right)$,
which is at the same time a fuzzy topology on X in Shostak 's sense.
Then, we will be able to avoid the fuzzy point concept, and to introduce
an adeguate theory for $\alpha$-neighbourhoods and $\alpha-T_{i}$
separation axioms which extend the usual ones in General Topology.
In particular, our $\alpha$-Hausdorff fuzzy space agrees with $\alpha${*}
-Rodabaugh Hausdorff fuzzy space when (X, $\mathcal{T}$) is interpreservative
or $\alpha$-locally minimal.
Type: Article
URI: http://hdl.handle.net/10077/4343
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.30 (1999) s.

Files in This Item:
File Description SizeFormat
GregoriVidalRendMat30s.pdf234.01 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 20

1,060
Last Week
0
Last month
0
checked on Oct 28, 2020

Download(s) 10

387
Last Week
0
Last month
0
checked on Oct 28, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.