Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4343
Title: Fuzziness in Chang's fuzzy topological spaces
Authors: Gregori, Valentín
Vidal, Anna
Keywords: fuzzy topologygradation of opennessfuzzy point
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Valentín Gregori and Anna Vidal, "Fuzziness in Chang's fuzzy topological spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1999) suppl., pp. 111-121.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
30 (1999) suppl.
Abstract: It is known that fuzziness within the concept of openness of a fuzzy set in a Chang's fuzzy topological space (fts) is absent. In this paper we introduce a gradation of openness for the open sets of a Chang jts (X, $\mathcal{T}$) by means of a map $\sigma\;:\; I^{x}\longrightarrow I\left(I=\left[0,1\right]\right)$, which is at the same time a fuzzy topology on X in Shostak 's sense. Then, we will be able to avoid the fuzzy point concept, and to introduce an adeguate theory for $\alpha$-neighbourhoods and $\alpha-T_{i}$ separation axioms which extend the usual ones in General Topology. In particular, our $\alpha$-Hausdorff fuzzy space agrees with $\alpha${*} -Rodabaugh Hausdorff fuzzy space when (X, $\mathcal{T}$) is interpreservative or $\alpha$-locally minimal.
URI: http://hdl.handle.net/10077/4343
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.30 (1999) s.

Files in This Item:
File Description SizeFormat
GregoriVidalRendMat30s.pdf234.01 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

993
checked on Apr 11, 2019

Download(s)

363
checked on Apr 11, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.