Options
Complex foliations in generalized twistor spaces
Migliorini, Massimiliano
Tommasini, Adriano
1998
Abstract
We consider a natural almost complex distribution on the associated
bundle $F^{\left(n\right)}M$ to the principal bundle of the g-orthogonal
oriented frames on a Riemannian manifold (M, g), with standard fibre
$\frac{SO\left(2n+k\right)}{U\left(n\right)\times SO\left(k\right)}$:
we find necessary and sufficient conditions ensuring that the distribution
is an almost complex foliation in $F^{\left(n\right)}M$ and we compute
the Nijenhuis tensor. Finally, we characterize the local sections
of $F^{\left(n\right)}M$.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
30 (1998)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Massimiliano Migliorini and Adriano Tommasini, "Complex foliations in generalized twistor spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1998), pp. 57-70.
Languages
en
File(s)