Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/4374
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Del Santo, D. | - |
dc.date.accessioned | 2011-04-19T12:01:38Z | - |
dc.date.available | 2011-04-19T12:01:38Z | - |
dc.date.issued | 1997 | - |
dc.identifier.citation | D. Del Santo, "Global existence and blow-up for a hyperbolic system in three space dimensions", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 29 (1997), pp. 115-139. | it_IT |
dc.identifier.issn | 0049-4704 | - |
dc.identifier.uri | http://hdl.handle.net/10077/4374 | - |
dc.description.abstract | Using the technique developed by F. Jolm in $\left[7\right]$, we study the existence and the nonexistence of global classical solutions to the Cauchy problem for \[ \partial_{t}^{2}u-\Delta_{x}u=\mid v\mid^{p}, \] \[ \partial_{t}^{2}v-\Delta_{x}v=\mid u\mid^{q}, \] in $\mathbf{R_{\textrm{x}}^{\textrm{3}}}\times[0,+\infty[$ | - |
dc.language.iso | en | it_IT |
dc.publisher | Università degli Studi di Trieste. Dipartimento di Scienze Matematiche | it_IT |
dc.relation.ispartofseries | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics | it_IT |
dc.relation.ispartofseries | 29 (1997) | it_IT |
dc.title | Global existence and blow-up for a hyperbolic system in three space dimensions | it_IT |
dc.type | Article | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.29 (1997) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DelsantoRendMat29.pdf | 264.66 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
608
checked on Aug 8, 2022
Download(s) 50
382
checked on Aug 8, 2022
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.