Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4735
Title: Approximate sequences versus inverse sequences
Authors: Uglešić, N.
Issue Date: 1993
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: N. Uglešić, “Approximate sequences versus inverse sequences”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 25 (1993), pp. 467-479.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
25 (1993)
Abstract: In questa nota si costruisce una sequenza inversa approssimata $\mathcal{X}=\left(\textrm{P}_{n},\epsilon_{n},\textrm{P}_{n,n'},\mathbb{N}\right)$ di continui planari poliedrali $\textrm{P}_{n}$ in maniera tale che $\mathcal{X}$ e la sequenza (commutativa) inversa corrispondente $\underline{X}$ = $\left(\textrm{P}_{n},\textrm{p}_{n,n+1},\mathbb{N}\right)$ abbiano limiti non omeomorfi. Si ha così un miglioramento essenziale di un precedente esempio del medesimo autore relativo a continui planari non poliedrali.
An approximate inverse sequence $\mathcal{X}=\left(\textrm{P}_{n},\epsilon_{n},\textrm{P}_{n,n'},\mathbb{N}\right)$ of polyhedral planar continua $\textrm{P}_{n}$ is constructed, such that $\mathcal{X}$ and the corresponding (commutative) inverse sequence $\underline{X}$ = $\left(\textrm{P}_{n},\textrm{p}_{n,n+1},\mathbb{N}\right)$ have non-homeomorphic limits. This is an essential improvement of the author's previous example, which consisted of non-polyhedral planar continua.
URI: http://hdl.handle.net/10077/4735
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.25 (1993)

Files in This Item:
File Description SizeFormat 
UglesicRendMat25.pdf148 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

449
checked on Feb 20, 2018

Download(s)

222
checked on Feb 20, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.