Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4825
Title: Nodal regions for solutions of nonlinear elliptic problems
Authors: Di Piazza, Luisa
Maniscalco, Caterina
Issue Date: 1990
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Luisa Di Piazza, Caterina Maniscalco, “Nodal regions for solutions of nonlinear elliptic problems”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 22 (1990), pp. 91-108.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
22 (1990)
Abstract: In questo lavoro, mediante la teoria di Morse, viene data una stima del numero delle regioni nodali delle soluzioni del problema $-\Delta u=\lambda c(x)u+\mid u\mid^{p-2}u\: in\:\Omega,\: u\epsilon H_{0}^{1}(\Omega),\: dove\:\Omega\subset\mathbf{R^{\textrm{n}}},N\geq3$, è un aperto connesso, limitato e regolare, $p\epsilon(2,2N/(N-2],$ c(x) $\epsilon L^{q}(\Omega),$ q > p/(p-2) e $\lambda\epsilon\mathbf{R}$.
In this paper we are concerned with the problem $-\Delta u=\lambda c(x)u+\mid u\mid^{p-2}u\: in\:\Omega,\: u\epsilon H_{0}^{1}(\Omega),\: where\:\Omega\subset\mathbf{R^{\textrm{n}}},N\geq3$, is a smooth bounded domain, $p\epsilon(2,2N/(N-2],$ c(x) $\epsilon L^{q}(\Omega),$ q > p/(p-2) and $\lambda\epsilon\mathbf{R}$. Using the Morse theory, we estimate the number of the nodal regions of the solutions of the above problem.
URI: http://hdl.handle.net/10077/4825
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.22 (1990)

Files in This Item:
File Description SizeFormat 
DiPiazzaManiscalcoRendMat22.pdf824.04 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

473
checked on Feb 20, 2018

Download(s)

254
checked on Feb 20, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.