Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4825
DC FieldValueLanguage
dc.contributor.authorDi Piazza, Luisa-
dc.contributor.authorManiscalco, Caterina-
dc.date.accessioned2011-06-27T08:11:45Z-
dc.date.available2011-06-27T08:11:45Z-
dc.date.issued1990-
dc.identifier.citationLuisa Di Piazza, Caterina Maniscalco, “Nodal regions for solutions of nonlinear elliptic problems”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 22 (1990), pp. 91-108.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/4825-
dc.description.abstractIn questo lavoro, mediante la teoria di Morse, viene data una stima del numero delle regioni nodali delle soluzioni del problema $-\Delta u=\lambda c(x)u+\mid u\mid^{p-2}u\: in\:\Omega,\: u\epsilon H_{0}^{1}(\Omega),\: dove\:\Omega\subset\mathbf{R^{\textrm{n}}},N\geq3$, è un aperto connesso, limitato e regolare, $p\epsilon(2,2N/(N-2],$ c(x) $\epsilon L^{q}(\Omega),$ q > p/(p-2) e $\lambda\epsilon\mathbf{R}$.-
dc.description.abstractIn this paper we are concerned with the problem $-\Delta u=\lambda c(x)u+\mid u\mid^{p-2}u\: in\:\Omega,\: u\epsilon H_{0}^{1}(\Omega),\: where\:\Omega\subset\mathbf{R^{\textrm{n}}},N\geq3$, is a smooth bounded domain, $p\epsilon(2,2N/(N-2],$ c(x) $\epsilon L^{q}(\Omega),$ q > p/(p-2) and $\lambda\epsilon\mathbf{R}$. Using the Morse theory, we estimate the number of the nodal regions of the solutions of the above problem.-
dc.language.isoenit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Scienze Matematicheit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries22 (1990)it_IT
dc.titleNodal regions for solutions of nonlinear elliptic problemsit_IT
dc.typeArticle-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.22 (1990)
Files in This Item:
File Description SizeFormat
DiPiazzaManiscalcoRendMat22.pdf824.04 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

760
checked on Mar 20, 2023

Download(s) 50

320
checked on Mar 20, 2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.