Publication:
A vanishing theorem for the ideal sheaf of codimension two subvarieties of \bf P^n

Loading...
Thumbnail Image
Date
1990
Journal Title
Journal ISSN
Volume Title
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Research Projects
Organizational Units
Journal Issue
Abstract
Sia X $\subset\mathbf{P^{\textrm{n}}}$ una varietà di codimensione 2. Proviamo che H$^{q}$($\mathcal{I}_{x}(t))$=0 per n$\geq$q +4t+3, e 1$\leq q\leq n-2$
Let X $\subset\mathbf{P^{\textrm{n}}}$ be a 2-codimensional variety. We prove that H$^{q}$($\mathcal{I}_{x}(t))$=0 for n$\geq$q +4t+3, and 1$\leq q\leq n-2$
Description
Keywords
Citation
Alberto Alzati, Giorgio Ottaviani, “A vanishing theorem for the ideal sheaf of codimension two subvarieties of \bf P^n”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 22 (1990), pp. 136-139.