Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4831
Title: Some consequences of an easy cardinal inequality involving separating open covers
Authors: Bella, Angelo
Issue Date: 1989
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Angelo Bella, “Some consequences of an easy cardinal inequality involving separating open covers”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 21 (1989), pp. 1-5.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
21 (1989)
Abstract: Vengono fornite alcune disuguaglianze cardinali relative a varie funzioni cardinali definite in termini di certi ricoprimenti aperti. Tra l'altro si prova che $\mid X\mid\leq e(X)^{\psi m(X)}$ e $\mid X\mid\leq wL(X)^{\psi u(X)}$ per ogni T$_{1}$-spazio x completamente regolare. Qui e (X), wL(X), $\psi m(X)$ e $\psi u(X)$ denotano rispettivamente l'estensione, il numero debole di Lindel$\ddot{\textrm{o}}$f.
Some cardinal inequalities with cardinal functions defined in terms of certain typed of covers are given. Among other results it is shown that $\mid X\mid\leq e(X)^{\psi m(X)}$ and $\mid X\mid\leq wL(X)^{\psi u(X)}$ for any completely regular T$_{1}$-space x. Here e (X), wL(X), $\psi m(X)$ e $\psi u(X)$ denote respectively the extent, the weak Lindel$\ddot{\textrm{o}}$f number, the pseudo-metrizability degree and the pseudo uniform weight of X.
URI: http://hdl.handle.net/10077/4831
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.21 (1989)

Files in This Item:
File Description SizeFormat 
BellaRendMat21.pdf370.41 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

661
Last Week
1
Last month
checked on Oct 15, 2018

Download(s)

258
checked on Oct 15, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.