Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4965
DC FieldValueLanguage
dc.contributor.authorBahri, A.-
dc.contributor.authorCoron, J. M.-
dc.date.accessioned2011-07-13T11:27:35Z-
dc.date.available2011-07-13T11:27:35Z-
dc.date.issued1986-
dc.identifier.citationA. Bahri, J. M. Coron, “Equation de Yamabe sur un ouvert non contractile”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 18 (1986), pp. 1-15.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/4965-
dc.description.abstractSia $\Omega$ un aperto limitato regolare di $\mathbf{R^{\textrm{3}}}$. Si dimostra che se $\Omega$ è connesso, ma non contrattile, allora l'equazione $\Delta u+u^{5}$=0 in $\Omega$, u > 0 in $\Omega$ e u=0 su $\text{\ensuremath{\partial\Omega}}$ ha almeno una soluzione.-
dc.description.abstractLet $\Omega$ be a bounded open regular set in $\mathbf{R^{\textrm{3}}}$. We prove that if $\Omega$ is connected but not contractible, then the equation $\Delta u+u^{5}$=0 in $\Omega$, u > 0 in $\Omega$ and u=0 on $\text{\ensuremath{\partial\Omega}}$ has at least a solution.-
dc.language.isofrit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Scienze Matematicheit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries18 (1986)it_IT
dc.titleEquation de Yamabe sur un ouvert non contractileit_IT
dc.typeArticle-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1fr-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.18 (1986)
Files in This Item:
File Description SizeFormat
BahriCoronRendMat18.pdf853.63 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 20

1,045
checked on Aug 11, 2022

Download(s) 50

370
checked on Aug 11, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.