Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4985
Title: Solution of a BVP constrained in an infinitely deep potential well
Authors: Coti Zelati, Vittorio
Issue Date: 1986
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Vittorio Coti Zelati, “Solution of a BVP constrained in an infinitely deep potential well”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 18 (1986), pp. 100-104.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
18 (1986)
Abstract: 
Si dimostra l'esistenza di una soluzione per il problema al contorno
\[
-\ddot{x}=\nabla U(x),x(0)=x(a)=0
\]
dove x:$\left[0,a\right]\mathbf{R^{\textrm{n}},}U:\Omega\subset\mathbf{R^{\textrm{n}}\rightarrow\mathbf{R}}$,
U convessa e U(x)$\rightarrow+\infty$quando x$\rightarrow\text{\ensuremath{\partial}}\Omega$.
Il metodo usato sì basa sul Principio di Azione Duale di Clarke e
Ekeland.

We prove existence of a solution for the boundary value problem
\[
-\ddot{x}=\nabla U(x),x(0)=x(a)=0
\]
where x:$\left[0,a\right]\mathbf{R^{\textrm{n}},}U:\Omega\subset\mathbf{R^{\textrm{n}}\rightarrow\mathbf{R}}$,
U convex and U(x)$\rightarrow+\infty$ as x$\rightarrow\text{\ensuremath{\partial}}\Omega$.
The method employed is based on the use ot the Dual Action Principle
of Clarke and Ekeland.
Type: Article
URI: http://hdl.handle.net/10077/4985
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.18 (1986)

Files in This Item:
File Description SizeFormat
CotiZelatiRendMat18.pdf276.84 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

849
Last Week
2
Last month
1
checked on Oct 26, 2020

Download(s) 20

306
Last Week
0
Last month
0
checked on Oct 26, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.