Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/5030
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rybakowski, Krzysztof P. | - |
dc.date.accessioned | 2011-07-27T07:40:33Z | - |
dc.date.available | 2011-07-27T07:40:33Z | - |
dc.date.issued | 1986 | - |
dc.identifier.citation | Krzysztof P. Rybakowski, “On critical groups and the homotopy index in Morse theory on Hilbert manifolds”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 18 (1986), pp. 163-176. | it_IT |
dc.identifier.issn | 0049-4704 | - |
dc.identifier.uri | http://hdl.handle.net/10077/5030 | - |
dc.description.abstract | Sia U un aperto nello spazio di Hilbert H, $\varphi\epsilon C^{2-}(U,\mathbf{R)\textrm{,}}\xi\epsilon U$ un punto critico isolato di $\varphi$, e $\pi$il flusso generato dalle soluzioni di $\dot{u}$=-$\triangle\varphi(u)$. Se $\xi$ ha un intorno fortemente ammissibile, allora i gruppi critici di ($\varphi$, $\xi$) nel senso di Rothe sono isomorfi ai gruppi di omologia dell'indice di omotopia di ($\pi,\left\{ \xi\right\} )$ (Teorema 2). Se $\varphi\epsilon C^{2}(U,\mathbf{R})$, $\varphi''(\xi)$ è un'applicazione di Fredholm, ma $\xi$ non ha un intorno fortemente ammissibile, allora tutti i gruppi critici di ($\varphi,\xi)$ sono uguali a zero (banali) (Teorema 4). | - |
dc.description.abstract | Let U be open in the Hilbert space H, $\varphi\epsilon C^{2-}(U,\mathbf{R)\textrm{,}}\xi\epsilon U$ be an isolated criticai point of $\varphi$, and $\pi$ be the flow generated by the solutions of $\dot{u}$=-$\triangle\varphi(u)$. If $\xi$ has a strongly admissible neighborhood, then the critical groups of ($\varphi$, $\xi$) are isomorphic to the homology groups of the homotopy index of ($\pi,\left\{ \xi\right\} )$ (Theorem 2). If $\varphi\epsilon C^{2}(U,\mathbf{R})$, $\varphi''(\xi)$ is a Fredholm operator, but $\xi$ does not have a strongly admissible neighborhood then all critical groups of ($\varphi,\xi)$ are trivial (Theorem 4). | - |
dc.language.iso | en | it_IT |
dc.publisher | Università degli Studi di Trieste. Dipartimento di Scienze Matematiche | it_IT |
dc.relation.ispartofseries | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics | it_IT |
dc.relation.ispartofseries | 18 (1986) | it_IT |
dc.title | On critical groups and the homotopy index in Morse theory on Hilbert manifolds | it_IT |
dc.type | Article | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.18 (1986) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Rybakowski2RendMat18.pdf | 938.97 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
758
checked on Aug 8, 2022
Download(s) 50
362
checked on Aug 8, 2022
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.