Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/5057
Title: A remark on Alexander duality and Thom classes
Authors: Struppa, Daniele
Turrini, Cristina
Issue Date: 1985
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Daniele Struppa, Cristina Turrini, “A remark on Alexander duality and Thom classes”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 17 (1985), pp. 79-86.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
17 (1985)
Abstract: 
Sia M una n-varietà differenziabile orientata e compatta, A$\subset$M
un chiuso, U=M\textbackslash{}A. Ad ogni (n-k)-varietà a bordo (S,
\ensuremath{\partial}S)$\subset$(M, U) si associa, per dualità di
Alexander, una ``k-forma'' $\tau^{(s)}\epsilon\bar{H^{k}}(A)$.
Il teorema di isomorfismo di Thom permette poi di fornire una costruzione
esplicita di $\tau^{(s)}$. Si discutono infine alcuni esempi concreti.

Let M be an n-dimensionai compact oriented differentiable manifold,
A$\subset$M a closed subset, U=M\textbackslash{}A. We associate to
each (n-k)-submanifold with boundary (S, \ensuremath{\partial}S)$\subset$(M,
U) a ``k-form'' $\tau^{(s)}\epsilon\bar{H^{k}}(A)$. via Alexander
duality. Thom isomorphism theorem enables us to provide an explicit
construction of $\tau^{(s)}$. Finally we discuss some concrete examples.
Type: Article
URI: http://hdl.handle.net/10077/5057
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.17 (1985)

Files in This Item:
File Description SizeFormat
StruppaTurriniRendMat17.pdf546.87 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

800
Last Week
1
Last month
2
checked on Jul 31, 2021

Download(s)

546
Last Week
0
Last month
3
checked on Jul 31, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.