Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/5057
DC FieldValueLanguage
dc.contributor.authorStruppa, Daniele-
dc.contributor.authorTurrini, Cristina-
dc.date.accessioned2011-07-27T12:26:45Z-
dc.date.available2011-07-27T12:26:45Z-
dc.date.issued1985-
dc.identifier.citationDaniele Struppa, Cristina Turrini, “A remark on Alexander duality and Thom classes”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 17 (1985), pp. 79-86.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/5057-
dc.description.abstractSia M una n-varietà differenziabile orientata e compatta, A$\subset$M un chiuso, U=M\textbackslash{}A. Ad ogni (n-k)-varietà a bordo (S, \ensuremath{\partial}S)$\subset$(M, U) si associa, per dualità di Alexander, una ``k-forma'' $\tau^{(s)}\epsilon\bar{H^{k}}(A)$. Il teorema di isomorfismo di Thom permette poi di fornire una costruzione esplicita di $\tau^{(s)}$. Si discutono infine alcuni esempi concreti.-
dc.description.abstractLet M be an n-dimensionai compact oriented differentiable manifold, A$\subset$M a closed subset, U=M\textbackslash{}A. We associate to each (n-k)-submanifold with boundary (S, \ensuremath{\partial}S)$\subset$(M, U) a ``k-form'' $\tau^{(s)}\epsilon\bar{H^{k}}(A)$. via Alexander duality. Thom isomorphism theorem enables us to provide an explicit construction of $\tau^{(s)}$. Finally we discuss some concrete examples.-
dc.language.isoenit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Scienze Matematicheit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries17 (1985)it_IT
dc.titleA remark on Alexander duality and Thom classesit_IT
dc.typeArticle-
item.languageiso639-1en-
item.openairetypearticle-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.17 (1985)
Files in This Item:
File Description SizeFormat
StruppaTurriniRendMat17.pdf546.87 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

802
Last Week
1
Last month
2
checked on Sep 26, 2021

Download(s)

551
Last Week
0
Last month
3
checked on Sep 26, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.