Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/6414
Title: Zur Darstellung von Lösungen einer Klasse linearer partieller Differentialgleichungen
Authors: Püngel, Jürgen
Issue Date: 1982
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Jürgen Püngel, "Zur Darstellung von Lösungen einer Klasse linearer partieller Differentialgleichungen", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 14 (1982), pp. 71-84.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
14 (1982)
Abstract: 
Questa nota riguarda la costruzione di operatori differenziali lineari
\[
T=\overset{n}{\underset{i=0}{\sum}}\overset{m}{\underset{k=0}{\sum}}a_{ik}(z,\zeta)\frac{\partial^{i+k}}{\partial z^{i}\partial\zeta^{k}},
\]
$(z,\zeta)\epsilon\mathbf{D\subset C^{\textrm{2}}}$che trasformano
tutte le soluzioni u (z, $\zeta$) di equazioni u$_{z\zeta}$+ a($z,\zeta$)u$\zeta$+
b$(z,\zeta)$u$_{z}$= 0 in soluzioni $\tilde{u}$=Tu di equazioni
$\tilde{u}_{z\zeta}$+$\tilde{a}$$(z,\zeta)$$\tilde{u_{\zeta}}$+$\tilde{b}$$(z,\zeta)\tilde{u_{\zeta}}$=0

\[
T=\overset{n}{\underset{i=0}{\sum}}\overset{m}{\underset{k=0}{\sum}}a_{ik}(z,\zeta)\frac{\partial^{i+k}}{\partial z^{i}\partial\zeta^{k}},
\]
$(z,\zeta)\epsilon\mathbf{D\subset C^{\textrm{2}}}$which map all
solutions u (z, $\zeta$) of equations u$_{z\zeta}$+ a($z,\zeta$)u$\zeta$+
b$(z,\zeta)$u$_{z}$= 0 into solutions $\tilde{u}$=Tu of equations
$\tilde{u}_{z\zeta}$+$\tilde{a}$$(z,\zeta)$$\tilde{u_{\zeta}}$+$\tilde{b}$$(z,\zeta)\tilde{u_{\zeta}}$=0
Type: Article
URI: http://hdl.handle.net/10077/6414
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.14 (1982)

Files in This Item:
File Description SizeFormat
PungelRendMat14.pdf792.92 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

694
checked on Oct 16, 2019

Download(s)

291
checked on Oct 16, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.