Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/6465
Title: A note on a theorem of Khan
Authors: Fisher, Brian
Issue Date: 1978
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Brian Fisher, "A note on a theorem of Khan", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 10 (1978), pp. 1-4
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
10 (1978)
Abstract: T è un'applicazione di uno spazio metrico completo (X, d) in sè, tale che \[ \mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)} \] $dove$ 0$\leq\mathit{K<\textrm{1}}$, e $\mathit{x,}y$$\epsilon X.\textrm{Noi consideriamo ciò che accade se}$$\mathit{d(x,Ty)+d(y,Tx)}$=0
T is a mapping of the complete metric space (X, d) into itself satisfyng. \[ \mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)} \] $\textrm{where}$ 0$\leq\mathit{K<\textrm{1}}$, and $\mathit{x,}y$$\epsilon X.\textrm{We consider what happens if}$$\mathit{d(x,Ty)+d(y,Tx)}$=0
URI: http://hdl.handle.net/10077/6465
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.10 (1978)

Files in This Item:
File Description SizeFormat 
FisherRendMat10.pdf138.1 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

323
Last Week
0
Last month
1
checked on Oct 18, 2018

Download(s)

219
checked on Oct 18, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.