Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/6465
Title: A note on a theorem of Khan
Authors: Fisher, Brian
Issue Date: 1978
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Brian Fisher, "A note on a theorem of Khan", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 10 (1978), pp. 1-4
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
10 (1978)
Abstract: 
T è un'applicazione di uno spazio metrico completo (X, d) in sè, tale
che
\[
\mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)}
\]
$dove$ 0$\leq\mathit{K<\textrm{1}}$, e $\mathit{x,}y$$\epsilon X.\textrm{Noi consideriamo ciò che accade se}$$\mathit{d(x,Ty)+d(y,Tx)}$=0

T is a mapping of the complete metric space (X, d) into itself satisfyng.
\[
\mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)}
\]
$\textrm{where}$ 0$\leq\mathit{K<\textrm{1}}$, and $\mathit{x,}y$$\epsilon X.\textrm{We consider what happens if}$$\mathit{d(x,Ty)+d(y,Tx)}$=0
Type: Article
URI: http://hdl.handle.net/10077/6465
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.10 (1978)

Files in This Item:
File Description SizeFormat
FisherRendMat10.pdf138.1 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

472
Last Week
8
Last month
checked on Nov 30, 2020

Download(s) 5

268
checked on Nov 30, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.