Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/6465
Title: A note on a theorem of Khan
Authors: Fisher, Brian
Issue Date: 1978
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source: Brian Fisher, "A note on a theorem of Khan", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 10 (1978), pp. 1-4
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
10 (1978)
Abstract: T è un'applicazione di uno spazio metrico completo (X, d) in sè, tale che \[ \mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)} \] $dove$ 0$\leq\mathit{K<\textrm{1}}$, e $\mathit{x,}y$$\epsilon X.\textrm{Noi consideriamo ciò che accade se}$$\mathit{d(x,Ty)+d(y,Tx)}$=0
T is a mapping of the complete metric space (X, d) into itself satisfyng. \[ \mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)} \] $\textrm{where}$ 0$\leq\mathit{K<\textrm{1}}$, and $\mathit{x,}y$$\epsilon X.\textrm{We consider what happens if}$$\mathit{d(x,Ty)+d(y,Tx)}$=0
URI: http://hdl.handle.net/10077/6465
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.10 (1978)

Files in This Item:
File Description SizeFormat 
FisherRendMat10.pdf138.1 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

316
checked on Feb 23, 2018

Download(s)

214
checked on Feb 23, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.