Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/8272
Title: | Index and persistence of stable Cantor sets | Authors: | Ortega, Rafael Ruiz-Herrera, Alfonso |
Keywords: | Lyapunov stability; Cantor set; fixed point index; translation arc | Issue Date: | 2012 | Publisher: | EUT Edizioni Università di Trieste | Source: | Rafael Ortega, Alfonso Ruiz-Herrera, "Index and persistence of stable Cantor sets", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 33–44. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 44 (2012) |
Abstract: | A theorem by Bell and Meyer says that a stable and transitive Cantor set in the plane can be approximated by periodic points. We prove that the periodic points can be chosen with index one. As a consequence these Cantor sets are always persistent invariant sets. |
Type: | Article | URI: | http://hdl.handle.net/10077/8272 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.44 (2012) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Ortega_RuizHerrera_RIMUT44.pdf | 221.71 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
831
checked on Jan 27, 2023
Download(s) 50
720
checked on Jan 27, 2023
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.