Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/8279
DC FieldValueLanguage
dc.contributor.authorSabatini, Marco-
dc.date.accessioned2013-01-22T13:14:39Z-
dc.date.available2013-01-22T13:14:39Z-
dc.date.issued2012-
dc.identifier.citationMarco Sabatini, "Linearizations, normalizations and isochrones of planar differential systems", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 153–171.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/8279-
dc.description.abstractIn the first section we collect some unpublished results presented in [17], related to linearizations and normalizations of planar centers. In the second section we consider both the problem of finding isochrones of isochronous systems (centers or not) and its inverse, i.e. given a family of curves filling an open set, how to construct a system having such curves as isochrones. In particular, we show that for every family of curves y = mx+d(x), m ∈ IR, there exists a Liénard system having such curves as isochrones.it_IT
dc.language.isoitit_IT
dc.publisherEUT Edizioni Università di Triesteit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries44 (2012)it_IT
dc.subjectplanar systemsit_IT
dc.subjectperiod functionit_IT
dc.titleLinearizations, normalizations and isochrones of planar differential systemsit_IT
dc.typeArticle-
dc.subject.msc201034C25it_IT
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.44 (2012)
Files in This Item:
File Description SizeFormat
Sabatini_RIMUT44.pdf326.22 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s)

628
checked on Jun 6, 2019

Download(s)

631
checked on Jun 6, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.