Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/8305
Title: | SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension | Authors: | Bianchini, Stefano Yu, Lei |
Keywords: | hyperbolic conservation laws; SBV-like regular; wave-front tracking | Issue Date: | 2012 | Publisher: | EUT Edizioni Università di Trieste | Source: | Stefano Bianchini and Lei Yu, "SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 439–472. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 44 (2012) |
Abstract: | We prove the SBV regularity of the characteristic speed of the scalar hyperbolic conservation law and SBV-like regularity of the eigenvalue functions of the Jacobian matrix of flux function for general hyperbolic systems of conservation laws. More precisely, for the equation $$ u_t + f(u)_x = 0, \quad u : \mathbb{R}^+ \times \mathbb{R} \to \Omega \subset \mathbb{R}^N, $$ we only assume that the flux $f$ is a $C^2$ function in the scalar case ($N=1$) and Jacobian matrix $Df$ has distinct real eigenvalues in the system case $(N\geq 2)$. We show that for the scalar equation $f'(u)$ belongs to the SBV space, and for system of conservation laws the $i$-th component of $D_x\lambda_i(u)$ has no Cantor part, where $\lambda_i$ is the $i$-th eigenvalue of the matrix $Df$. |
Type: | Article | URI: | http://hdl.handle.net/10077/8305 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.44 (2012) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Bianchini_LeiYu_RIMUT44.pdf | 353.51 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 20
902
checked on Feb 6, 2023
Download(s) 50
668
checked on Feb 6, 2023
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.