Options
SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension
Bianchini, Stefano
Yu, Lei
2012
Abstract
We prove the SBV regularity of the characteristic speed of the scalar hyperbolic conservation law and SBV-like regularity of the eigenvalue functions of the Jacobian matrix of flux function for general hyperbolic systems of conservation laws. More precisely, for the equation
$$
u_t + f(u)_x = 0, \quad u : \mathbb{R}^+ \times \mathbb{R} \to \Omega \subset \mathbb{R}^N,
$$
we only assume that the flux $f$ is a $C^2$ function in the scalar case ($N=1$) and Jacobian matrix $Df$ has distinct real eigenvalues in the system case $(N\geq 2)$. We show that for the scalar equation $f'(u)$ belongs to the SBV space, and for system of conservation laws the $i$-th component of $D_x\lambda_i(u)$
has no Cantor part, where $\lambda_i$ is the $i$-th eigenvalue of the matrix $Df$.
$$
u_t + f(u)_x = 0, \quad u : \mathbb{R}^+ \times \mathbb{R} \to \Omega \subset \mathbb{R}^N,
$$
we only assume that the flux $f$ is a $C^2$ function in the scalar case ($N=1$) and Jacobian matrix $Df$ has distinct real eigenvalues in the system case $(N\geq 2)$. We show that for the scalar equation $f'(u)$ belongs to the SBV space, and for system of conservation laws the $i$-th component of $D_x\lambda_i(u)$
has no Cantor part, where $\lambda_i$ is the $i$-th eigenvalue of the matrix $Df$.
Publisher
EUT Edizioni Università di Trieste
Source
Stefano Bianchini and Lei Yu, "SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 439–472.
Series/Report
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
44 (2012)
Languages
en
File(s)
Loading...
Name
Bianchini_LeiYu_RIMUT44.pdf
Size
353.51 KB
Format
Adobe PDF
Checksum (MD5)
f9a992efbca6e79b132712ad243d64d9