Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/8307
Title: Katětov order, Fubini property and Hausdorff ultrafilters
Authors: Hrušák, Michael
Meza-Alcántara, David
Keywords: Hausdorff ultrafilterHrušák orderFubini property
Issue Date: 2012
Publisher: EUT Edizioni Università di Trieste
Source: Michael Hrušák, David Meza-Alcántara, "Katětov order, Fubini property and Hausdorff ultrafilters", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 503–511.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
44 (2012)
Abstract: We study the Fubini property of ideals on omega and prove that the Solecki’s ideal S is critical for this property in the Katětov order. We show that a well-known F_sigma-ideal is critical for Hausdorff ultrafilters in the Katětov order and, by investigating the position of this ideal in the Katětov order, we show some of the known properties of this class of ultrafilters, including the Fubini property.
URI: http://hdl.handle.net/10077/8307
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.44 (2012)

Files in This Item:
File Description SizeFormat 
Hrusak_MezaAlcantara_RIMUT44.pdf238.17 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

1,037
Last Week
0
Last month
0
checked on Oct 22, 2018

Download(s)

461
checked on Oct 22, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.