Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.44 (2012)
  6. Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space
 
  • Details
  • Metrics
Options

Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space

Bonheure, Denis
•
De Coster, Colette
•
Derlet, Ann
2012
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/8311
  • Article

Abstract
In this paper, we show that the quasilinear equation
$$
-{\rm div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right) = |u|^{\alpha-2}u,\ \text{ in }\mathbb{R}^{N}
$$
has a positive smooth radial solution at least for any $\alpha> 2^{\star}=2N/(N-2)$, $N\ge 3$. Our approach is based on the study of the optimizers for the best constant in the inequality
$$
\int_{\mathbb{R}^N}(1-\sqrt{1-|\nabla u|^2}) \ge C \left( \int_{\mathbb{R}^{N}} |u|^\alpha\right)^{\frac{N}{\alpha+N}},
$$
which holds true in the unit ball of $W^{1,\infty}(\mathbb{R}^{{N}})\cap \mathcal D^{1;2}(\mathbb{R}^{N})$ if and only if $\alpha\ge 2^{\star}$. We also prove that the best constant is not achieved for $\alpha=2^{\star}$. As a byproduct, our arguments combined with Lusternik-Schnirelmann category theory allow to construct a sequence of radial solutions.
Subjects
  • Mean curvature equati...

  • Lusternik- Schnirelma...

  • multiplicity

  • super critical expone...

Publisher
EUT Edizioni Università di Trieste
Source
Denis Bonheure, Colette De Coster, Ann Derlet, "Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 259–284.
Series/Report
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
44 (2012)
Languages
en
File(s)
Loading...
Thumbnail Image
Name

Bonheure_DeCoster_Derlet_RIMUT44.pdf

Size

310.56 KB

Format

Adobe PDF

Checksum (MD5)

5d04d5c0a54cea8fbb97b6b9421ef6eb

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback