Options
Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space
Bonheure, Denis
De Coster, Colette
Derlet, Ann
2012
Abstract
In this paper, we show that the quasilinear equation
$$
-{\rm div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right) = |u|^{\alpha-2}u,\ \text{ in }\mathbb{R}^{N}
$$
has a positive smooth radial solution at least for any $\alpha> 2^{\star}=2N/(N-2)$, $N\ge 3$. Our approach is based on the study of the optimizers for the best constant in the inequality
$$
\int_{\mathbb{R}^N}(1-\sqrt{1-|\nabla u|^2}) \ge C \left( \int_{\mathbb{R}^{N}} |u|^\alpha\right)^{\frac{N}{\alpha+N}},
$$
which holds true in the unit ball of $W^{1,\infty}(\mathbb{R}^{{N}})\cap \mathcal D^{1;2}(\mathbb{R}^{N})$ if and only if $\alpha\ge 2^{\star}$. We also prove that the best constant is not achieved for $\alpha=2^{\star}$. As a byproduct, our arguments combined with Lusternik-Schnirelmann category theory allow to construct a sequence of radial solutions.
$$
-{\rm div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right) = |u|^{\alpha-2}u,\ \text{ in }\mathbb{R}^{N}
$$
has a positive smooth radial solution at least for any $\alpha> 2^{\star}=2N/(N-2)$, $N\ge 3$. Our approach is based on the study of the optimizers for the best constant in the inequality
$$
\int_{\mathbb{R}^N}(1-\sqrt{1-|\nabla u|^2}) \ge C \left( \int_{\mathbb{R}^{N}} |u|^\alpha\right)^{\frac{N}{\alpha+N}},
$$
which holds true in the unit ball of $W^{1,\infty}(\mathbb{R}^{{N}})\cap \mathcal D^{1;2}(\mathbb{R}^{N})$ if and only if $\alpha\ge 2^{\star}$. We also prove that the best constant is not achieved for $\alpha=2^{\star}$. As a byproduct, our arguments combined with Lusternik-Schnirelmann category theory allow to construct a sequence of radial solutions.
Publisher
EUT Edizioni Università di Trieste
Source
Denis Bonheure, Colette De Coster, Ann Derlet, "Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 259–284.
Series/Report
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
44 (2012)
Languages
en
File(s)
Loading...
Name
Bonheure_DeCoster_Derlet_RIMUT44.pdf
Size
310.56 KB
Format
Adobe PDF
Checksum (MD5)
5d04d5c0a54cea8fbb97b6b9421ef6eb