Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/8534
Title: Distributed Methods for Estimation and Fault Diagnosis: the case of Large-scale Networked Systems
Authors: Boem, Francesca
Supervisore/Tutore: Parisini, Thomas
Cosupervisore: Polycarpou, Marios
Ferrari, Riccardo
Issue Date: 13-Mar-2013
Publisher: Università degli studi di Trieste
Abstract: L’obiettivo di questa tesi è il monitoraggio di sistemi complessi a larga-scala. L’importanza di questo argomento è dovuto alla rinnovata enfasi data alle problematiche riguardanti la sicurezza e l’affidabilità dei sistemi, diventate requisiti fondamentali nella progettazione. Infatti, la crescente complessità dei moderni sistemi, dove le relazioni fra i diversi componenti, con il mondo esterno e con il fattore umano sono sempre più importanti, implica una crescente attenzione ai rischi e ai costi dovuti ai guasti e lo sviluppo di approcci nuovi per il controllo e il monitoraggio. Mentre nel contesto centralizzato i problemi di stima e di diagnostica di guasto sono stati ampiamente studiati, lo sviluppo di metodologie specifiche per sistemi distribuiti, larga scala o “networked”, come i Cyber-Physical Systems e i Systems-of-Systems, è cominciato negli ultimi anni. Il sistema fisico è rappresentato come l’interconnessione di sottosistemi ottenuti attraverso una decomposizione del sistema complesso dove le sovrapposizioni sono consentite. L’approccio si basa sul modello dinamico non-lineare dei sottosistemi e sull’approssimazione adattativa delle non note interconnessioni fra i sottosistemi. La novità è la proposta di un’architettura unica che tenga conto dei molteplici aspetti che costituiscono i sistemi moderni, integrando il sistema fisico, il livello sensoriale e il sistema di diagnostica e considerando le relazioni fra questi ambienti e le reti di comunicazione. In particolare, vengono proposte delle soluzioni ai problemi che emergono dall’utilizzo di reti di comunicazione e dal considerare sistemi distribuiti e networked. Il processo di misura è effettuato da un insieme di reti di sensori, disaccoppiando il livello fisico da quello diagnostico e aumentando in questo modo la scalabilità e l’affidabilità del sistema diagnostico complessivo. Un nuovo metodo di stima distribuita per reti di sensori è utilizzato per filtrare le misure minimizzando sia la media sia la varianza dell’errore di stima attraverso la soluzione di un problema di ottimizzazione di Pareto. Un metodo per la re-sincronizzazione delle misure è proposto per gestire sistemi multi-rate e misure asincrone e per compensare l’effetto dei ritardi nella rete di comunicazione fra sensori e diagnostici. Poiché uno dei problemi più importanti quando si considerano sistemi distribuiti e reti di comunicazione è per l’appunto il verificarsi di ritardi di trasmissione e perdite di pacchetti, si propone una strategia di compensazione dei ritardi , basata sull’uso di Time Stamps e buffer e sull’introduzione di una matrice di consenso tempo-variante, che permette di gestire il problema dei ritardi nella rete di comunicazione fra diagnostici. Gli schemi distribuiti per la detection e l’isolation dei guasti sono sviluppati, garantendo la convergenza degli stimatori e derivando le condizioni sufficienti per la detectability e l’isolability. La matrice tempo-variante proposta permette di migliorare queste proprietà definendo delle soglie meno conservative. Alcuni risultati sperimentali provano l’efficacia del metodo proposto. Infine, le architetture distribuite per la detection e l’isolation, sviluppate nel caso tempo-discreto, sono estese al caso tempo continuo e nello scenario in cui lo stato non è completamente misurabile, sia a tempo continuo che a tempo discreto.
This thesis deals with the problem of the monitoring of modern complex systems. The motivation is the renewed emphasis given to monitoring and fault-tolerant systems. In fact, nowadays reliability is a key requirement in the design of technical systems. While fault diagnosis architectures and estimation methods have been extensively studied for centralized systems, the interest towards distributed, networked, large-scale and complex systems, such as Cyber-Physical Systems and Systems-of-Systems, has grown in the recent years. The increased complexity in modern systems implies the need for novel tools, able to consider all the different aspects and levels constituting these systems. The system being monitored is modeled as the interconnection of several subsystems and a divide et impera approach allowing overlapping decomposition is used. The local diagnostic decision is made on the basis of the knowledge of the local subsystem dynamic model and of an adaptive approximation of the uncertain interconnection with neighboring subsystems. The goal is to integrate all the aspects of the monitoring process in a comprehensive architecture, taking into account the physical environment, the sensor layer, the diagnosers level and the communication networks. In particular, specifically designed methods are developed in order to take into account the issues emerging when dealing with communication networks and distributed systems. The introduction of the sensor layer, composed by a set of sensor networks, allows the decoupling of the physical and the sensing/computation topologies, bringing some advantages, such as scalability and reliability of the diagnosis architecture. We design the measurements acquisition task by proposing a distributed estimation method for sensor networks, able to filter measurements so that both the variance and the mean of the estimation error are minimized by means of a Pareto optimization problem. Moreover, we consider multi-rate systems and non synchronized measurements, having in mind realistic applications. A re-synchronization method is proposed in order to manage the case of multi-rate systems and to compensate delays in the communication network between sensors and diagnosers. Since one of the problems when dealing with distributed, large-scale or networked systems and therefore with a communication network, is inevitably the presence of stochastic delays and packet dropouts, we propose therefore a distributed delay compensation strategy in the communication network between diagnosers, based on the use of Time Stamps and buffers and the definition of a time-varying consensus matrix. The goal of the novel time-varying matrix is twofold: it allows to manage communication delays, packet dropouts and interrupted links and to optimize detectability and isolability skills by defining less conservative thresholds. The distributed fault detection and isolation schemes are studied and analytical results regarding fault detectability, isolability and estimator convergence are derived. Simulation results show the effectiveness of the proposed architecture. For the sake of completeness, the monitoring architecture is studied and adapted to different frameworks: the fault detection and isolation methodology is extended for continuous-time systems and the case where the state is only partially measurable is considered for discrete-time and continuous-time systems.
Ciclo di dottorato: XXV Ciclo
metadata.dc.subject.classification: SCUOLA DI DOTTORATO DI RICERCA IN INGEGNERIA DELL'INFORMAZIONE
Description: 2011/2012
Keywords: Distributed Fault Detection
Monitoring
Large-scale systems
Distributed estimation
Sensor Networks
Synchronization
Delays
Cyber-Physical Systems
Language: en
Type: Doctoral Thesis
Settore scientifico-disciplinare: ING-INF/04 AUTOMATICA
NBN: urn:nbn:it:units-9914
Appears in Collections:Ingegneria industriale e dell'informazione

Files in This Item:
File Description SizeFormat 
boem_phd.pdfTESI DI DOTTORATO10.7 MBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

731
Last Week
0
Last month
5
checked on Oct 20, 2018

Download(s)

557
checked on Oct 20, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.