Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/8577
DC FieldValueLanguage
dc.contributor.advisorDri, Carloit_IT
dc.contributor.advisorComelli, Giovanniit_IT
dc.contributor.authorPeronio, Angeloit_IT
dc.date.accessioned2013-04-15T14:32:50Z-
dc.date.available2014-04-09T04:01:16Z-
dc.date.issued2013-04-09it_IT
dc.identifier.urihttp://hdl.handle.net/10077/8577-
dc.description2011/2012it_IT
dc.description.abstractThe present work pertains to the surface science approach to heterogeneous catalysis. In particular model systems for CO2 hydrogenation to methanol, and NO selective catalytic reduction, are investigated by means of a combined approach, where the molecular-level insight provided by a low-temperature scanning tunneling microscope is complemented by density functional theory (DFT) calculations of their electronic structure. To this end, the Inelastic Electron Tunneling Spectroscopy (STM-IETS) technique was introduced for the first time in our laboratory, a recent development which allows to measure the vibrational spectrum of individual molecules adsorbed on a surface. Regarding CO2, we provide single molecule imaging and characterization of CO2/Ni(110), chemisorbed with high charge transfer from the substrate, in an activated state that plays a crucial role in the hydrogenation process. We obtain a detailed characterization of the adsorption geometries and an estimate of the energies corresponding to the different adsorbed states. A consistent picture of CO2 chemisorption on Ni(110) is provided on the basis of the newly available information, yielding a deeper insight into the previously existing spectroscopic and theoretical data. In the Selective Catalytic Reduction (SCR) process, nitrogen oxide is selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction was tentatively attributed to the formation of NH3-NO coadsorption complexes, as indicated by several surface science techniques. Here we characterize the NH3-NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. The structures that arise upon coadsorption of NH3 and NO are analyzed in terms of adsorption sites, geometry, energetics and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer by 0.29 eV/unit cell. The calculated vibrational energies of the individually-adsorbed species and of the coadsorption structure fit the experimental values found in literature within less than 6%. The characterizations and optimizations that had to be tackled in order to successfully perform STM-IETS measurement are eventually presented, focusing in particular on an original method which allows to increase the achieved resolution. Namely, the modulation broadening associated to phase-sensitive detection is reduced by employing a tailored modulation function, different from the commonly-used sinusoid. This method is not limited to STM-IETS, but can be easily applied whenever a lock-in amplifier is used to measure a second derivative.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi di Triesteit_IT
dc.rights.urihttp://www.openstarts.units.it/dspace/default-license.jsp-
dc.subjectScanning Tunnelling Microscopyit_IT
dc.subjectSTMit_IT
dc.subjectInelastic Electron Tunnelling Spectroscopyit_IT
dc.subjectSTM-IETSit_IT
dc.subjectDensity Functional Theoryit_IT
dc.subjectDFTit_IT
dc.subjectheterogeneous catalysisit_IT
dc.subjectsurface scienceit_IT
dc.subjectmodel systemit_IT
dc.subjectreaction intermediatesit_IT
dc.subjectsingle moleculesit_IT
dc.subjectammoniait_IT
dc.subjectnitric monoxideit_IT
dc.subjectplatinum (111)it_IT
dc.subjectcoadsorptionit_IT
dc.subjectsurface-mediated interactionit_IT
dc.subjectcarbon dioxideit_IT
dc.subjectnickel (110)it_IT
dc.subjectchemisorptionit_IT
dc.subjectactivationit_IT
dc.subjectlock-in amplifierit_IT
dc.subjectinstrumental functionit_IT
dc.subjectnoise characterizationit_IT
dc.subject.classificationSCUOLA DI DOTTORATO DI RICERCA IN NANOTECNOLOGIEit_IT
dc.titleA closer look at heterogeneous catalysis: reaction intermediates at the single-molecule levelit_IT
dc.typeDoctoral Thesis-
dc.subject.miurFIS/03 FISICA DELLA MATERIAit_IT
dc.description.cycleXXV Cicloit_IT
dc.rights.statementEMBARGO 2014-04-09it_IT
dc.identifier.nbnurn:nbn:it:units-9982-
dc.description.birth1984-
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
Appears in Collections:Scienze fisiche
Files in This Item:
File Description SizeFormat
Peronio_phd.pdfPhD thesis24.38 MBAdobe PDFThumbnail
View/Open
new-modulation.nbMathematica code of chapter 6218.63 kBMathematicaView/Open
Show simple item record


CORE Recommender

Page view(s)

1,118
checked on May 31, 2019

Download(s)

1,086
checked on May 31, 2019

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons