Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/9603
Title: On a coefficient concerning an ill-posed Cauchy problem and the singularity detection with the wavelet transform
Authors: Fukuda, Naohiro
Kinoshita, Tamotu
Keywords: weakly hyperbolic equationsill-posed Cauchy problemGevrey classeswavelet transform
Issue Date: 2013
Publisher: EUT Edizioni Università di Trieste
Source: Naohiro Fukuda and Tamotu Kinoshita, "On a coefficient concerning an ill-posed Cauchy problem and the singularity detection with the wavelet transform", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 45 (2013), pp. 97–121.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
45 (2013)
Abstract: We study the Cauchy problem for 2nd order weakly hyperbolic equations. F. Colombini, E. Jannelli and S. Spagnolo showed a coefficient degenerating at an infinite number of points, with which the Cauchy problem is ill-posed Gevrey classes. Moreover, we olso report numerical results of the singularity detection with wavelet trasform for coefficient functions.
URI: http://hdl.handle.net/10077/9603
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.45 (2013)

Files in This Item:
File Description SizeFormat
Fukuda_Kinoshita_RIMUT_45.pdf921.12 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

561
Last Week
0
Last month
3
checked on Apr 11, 2019

Download(s)

521
checked on Apr 11, 2019

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons