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ABSTRACT

The work is aimed at providing some insights on the variability of hydrological
properties in porous media, focusing in particular on permeability. We consider an
approach which combinescaling and statistical analysef airpermeability @tasets

with porescale numerical simulations of flow through porous media. The former
investigation allows to characterize permeability heterogeneity at the centimeter
observation scale; the latter provides a description of heterogeneity on a millicadger s
by resolving physical processes occurring at the microscopic scale and deriving up
scaled quantities. Scalirand statistical analyses performed on synthetic permeability
distributions as well as on datasets collected on real media support thecaléonifof
truncated fractional Brownian motion (tfBm) or truncated fractional Gaussian noise
(tfGn) and of subGaussian random processes subordinated to tfBm (or tfGn) as viable
models for the interpretation of hydrological properties variability. Baake numerical
solutions of flow (i.e., in terms of velocity and pressure distributions) are performed on
both randomly generated samples and real porous media reconstructedhyisro-
Tomography. Different approaches for the enforcement of boundaditioms at the
fluid-solid interface provide qualitatively similar results in terms of both microscopic

and averaged quantities.



RIASSUNTO

La presente tesi ha come principale obiettigostudio dellavariabilita d proprieta
idrologiche in mezzi parsi, conparticolareattenzione allpermeabilita. A tal fine, i
avvak di un approccio che combina l'analisi di proprieta statistiche e di scaling
applicata adatasetdi permeabilitaconlo studio di risultati numericdli simulazionidi
flusso alla mcroscala inmezzi porosi.Con la prima analisi € possibitaratterizzare
variazioni dipermeabilita alla scala di misura (tipicamente dell'ordine eetirnetro),
mentre la seconda analisi da una descrizideléeterogeneita di permeabilita ad una
scalainferiore (nell'ordine del millimetra) ottenutarisolvendoprocessi fisici Ha scala
dei porie derivando le quantita integrali di interesdeanalisi statisticae di scaling
effettuatasia su distribuzionidi permeabilita sintetiche, siau daéset raccolti su
campioni reali,avvalora la validita dei modelli truncated fractional Brownian motion
(tfBm) etruncated fractional Gaussian no{#i&n), o di processi randosubGaussiani

ad essi subordinatiper linterpretazione della variabilitdi proprida idrologiche
Soluzioni numeriche di campi di flusgpe. velocita e pressione) alla scala dei pori sono
ottenute sia per campioni sintetisiaper campioni reali, la cui geometria é rizaga
mediante micréomografia a raggi X Diverse metodologiedi applicazione delle
condizioni al contorno in corrispondenza dell'interfaccia ligusadido fornscono
risultati qualitativamente simiiain termini diquantita microscopiche, sia in termini di

quantita medie
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Chapter 1
Introduction and outline

Understanding the nature of obsed variability of aquifer and reservoirs
hydraulic properties is a key issue which plays a major role on the assessment of the
impact of anthropogenic activities @oil systemsfor example,in terms of strategies
for groundwater management and develeptmor oil and gas recovemyrocedures
Efforts aimed at characterization of heterogeneity of aquifer systems typically focus on
the identification of appropriate modgishich are then employed to interpret the key
features of the investigated hydrauliojperties, on the basis of experimental datasets.
The problem is properly tackled within a stochastic framework. The characterization of
underground systems is complelydraulic parameters exhibit statistical features
varying with characteristic lengtrales, e.g. measurement support, measurement
resolution, scale of observation, spatial correlation and size of the sampled domain
(Neuman & Di Federico, 2003). Heretofore, in the literature, most of the attempts to
explain such scale dependencies have ftas the investigation of powkw scaling
behavior characterizingfatistical momentsfalistributions ofspatialincrements.

Anissuefaced withthe hydrologicalcharacterizatioperformedon the basis of
experimental measurements lies in the fact tin@ range ofscales that can be
investigateds limited by the data support. The latter is typically much largempared
to the characteristiporescalegoverning flowfransport processelSurthermorganother
key issue arises from thack of an unamliguousmethod to stimate thesupport scale
associated with measuremeGoggin et al., 1988; Tartakovsky et al., 2000; Molz et
al., 2003; Neuman and Di Federico, 2003).

On the other handgecent developments in peseale modeling and imaging
techniguesare contributing to render peseale numerical simulation of flow and

transport processes a viable approach to predics¢ajed) hydraulic/hydrological



properties. The high level of resolution achievable throughy<microtomography for
natural rockgeconstruction enables effective modeling of physical processes at the pore
scale. In this context, the investigation of the feedback betweerspale physics and
macroscopic properties is of key relevance for porous media characterization. Methods
for porescale flow simulation can be classified as either p@tevork, particlebased or
grid-based models. Concerning singlease flows, gricbased models are commonly
preferred, since they allow to preserve pgpace geometry together with numerical
efficiency (Blunt et al., 2012; Zaretskyi et al., 2010).

The dissertation comprises two main parts, devoted to permeability
characterization in porous media respectively by mearstatifstical andmulti-scale

analysisandporescale flow modeling.

Chapter2 focuses on statistical and scaling analy8isaew scheme for the
generation of synthetic permeability distributions is presergieowing its consistency
with the statistical and scaling features of earth and environmental varidlbles
method allows to gnerate samples of sihaussian random fieddsubordinated to
truncated fractional Brownian motion (tfBm) with heavy tailed subordinators (log
normal or Lévy)Different methods (method of moments, M, Extended Self Similarity,
ESS, and a generalized versithereof, GESS) all relying aifi’-order sample structure
functions of increments, have been employed to askessaling features afynthetic
permeability fields, generated with the above mentioned scheme, angberimental
permeability datasets, bected onthe faces of real rock samples (Topopah Spring tuff
and Berea Sandstone).

Chapter 3 is dedicated to peseale flow modelingThree different approaches
for the numericalsimulation of singlephase, fullysaturated flows ha been assessed to
characterize small scale permeability values. Simulations have been performed on
syntheticsamples, as well as on reatk samples. All approaches adopted belong to the
class of gridbased methodandrely on a stakstep approximation of the domain. The
most essentialdifference among theanodek consists in theboundary condition
enforcement atthe fluid-solid interface: the effectiveness of a volupenalizing
Immersed Boundary method, embedded in the EULAG software enviroriRreist et
al., 2008) has leen testedh comparison witha BodyFitted stairstep meshing strategy
and a ghostell Immersed Boundary method, respectiveiyibedded in the ANSYS



FLUENT (ANSYS FLUENT, 2009)and STOKES (Sarkar et al., 2002) The
mathematical formulation of the problemelies on the set of timdependent,
incompressible Stokes (STOKES model) and NaSimkes (ANSYS FLUENT and
EULAG models)equations The results obtained from the three methods have been
compared in terms of local flow fields characteristics (distrilmgtiof Eulerian velocity

components and pressure) and macroscopic quar(aacy flux and permeability).

Chapter 4 provides an overview of the most relevant results and highlights the

conclusions of the study.



Chapter 2
Scalng and statistical analyss of
permeability data

2.1 State of the art in scaling and statistical analyses of earth and environmental

variables

Many earth and environmental variables exhibit statistical features varying
with characteristic length (or time) scales associated vghset of measurements.
Neuman and Di Federico (2003), focusing on hydrogeologic variables, observed
isotropic and directional dependencies upon scales of measurement (data support),
observation (extent of phenomena such as a dispersing plume), samplichgwwi
(domain of investigation), spatial correlation (structural coherence), and spatial
resolution (descriptive detail).

The analysis of such scale dependencies is typically related with the
examination of powelaw behavior ofstructure function®f theinvestigated variables,
such as (log) permeability or (log) hydraulic conductivity (e.g. Neuman, 1990, 1994;
Painter, 1996; Liu anilolz, 1997a,b; Tennekoon et al., 2003), space me i ny |l t r at i
(Meng et al., 2006), river runoff (KosciekBunde et al., 2006) and streamflows
(Movahed and Hermanis, 2008; Zhang et al., 2008, 2009}dramsizes and positions
(Lilley et al., 2006), soil progrties (Caniego et al., 2005; Zeleke and Si, 2006, 2007),
electricalresistivity, natural gamma ray and spontaneous potential (Yang et al., 2009),
sediment transport data (Ganti et al.,, 2009; Singh et al., 2011) and precipitation
(Pashalis et al., 2012).

Let Y(X be the variable of interest, defined on a continuum of paifegher

space or time). Variations of such variable (i.e. increments) between two points located



at a given separation scaé.e. lag),DY,(9 =Y(x $ ¥ 3, are used to compute

order sample structure functions

1 NGO
——a| D ¥’ (2.1)
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WhereN(s) is the number of incremental dai¥, (9 for the given lags (for simplicity

we limit our mathematicadescriptionto one dimensn and our analysis of data tmn

negativevalues ofg).

With powerlaw behavior it is meant that
(9 €@ (2.2)

where x(q) is the scaling exponent dhe powedaw. The way with which this
exponent varies with the ordgrof the structure function is typically associated with
different types of scaling: a lineatependence of(q) on q indicates a seléffine
(monofractal) randonprocess; a nelinear behavioof x(q) is traditionally interpreted

as an index of a muifractal random process. The class of mfnagtal fields is
regarded to be fundamentally different from that of miutctal fields, the formebeing
originated by additive and the latter by multiplicative random fields (or processes).

Any nonstationary process, with stationary increments, characterized by a
power variogramg®(s)” s*', belongs to theclass of sekaffine processs. When
a =2, such field forms a fractional Brownian motion (fBm), its increments are
characterized by Gaussian distributions and its power variogga(s) , coincides with
the semistructure function of order 2yvhen O<a <2, the field is said to form a
fractional Lévy motion (fLm), its increments are distributed according to ameem,

symmetric Lévystable model and statistical moments (and then the ensemble structure
functions) of this digtbution are divergent for all order§>a. The parameteH
included in the expression of the power variogram represents the Hurst exponent:
increments of fBm and fLm, which are said to form respectively fractional Gaussian
noise (fGn and fractional Lévy noise (fLn), display lomgnge dependence

(persistence) whehl >1/a and negative dependence (gmersistence) wheil <1/a .



FBm and fLm processes respectively entail ordinary Brownian and Lévy
motions as particular cases, when increments are uncorrelateti G#&a ). Among
many other variables that appear to be-a#lhe, we mention the planar projections of
(i) drainage basin boundaries and main channels as functidhsioEulerian lengths;
(i) characteristic drainage area lengths, breadths and inverse densities as functions of
total channel length; andii() vegetative cover and mean steatiyte soil moisture as
functions of areaveighted distance from the channaltlet (Rodriguedturbe and
Rinaldo, 1997; Caylor et al., 2005; Neuman, 2009).

In the multifractal context, processes are associated with dimear behavior
of the scaling exponent. However, there is no known universally valid expression for
x(q) (Monin andYaglom, 1975; Lovejoy and Schertzer, 1995; Veneziano et al., 2006;
Fraysse, 2007). Functional forms ®fg) have been investigated theoretically by Qian
(2000) and Ni kora (200 592) codcepadf myjtiplicative Ri c h a
energy cascades, firstly introduced in the context of turbulence (Kolmogorov, 1962;
Obukhov 1962) has led Schertzer and Lovejoy (1987) to wa(tp = gH -K(g) and
express K(qg) explicitly in terms of H, the Lévy indexa and a codimension
proportional to the variance of the Gaussian distribution wéer2, and to the width
of the zeremean, symmetric Lévgtable distribution whenO<a <. This
multiplicative cascade model, termed universal by the authors, suggests thefl);
others approximatel by dx/dqg nearq=0. This model have been applied by some of
the above rantionedauthors (Liu andMolz, 1997ab; Tennekoon et al., 200Bjeng et
al., 2006; KoscielmBunde et al., 2006; Lilley et al., 2006; Zeleke and Si, 2006, 2007)

for the scaling analysis of diverse collections of data.

Meerschaert et al. (2004) and Kozwski et al. (2006) developed a model
based on fractional Laplace motions (fLam), which predicts scaling expoxi@r)tso
vary in a nodinear fashion withg, in a manner similar to that of muftiactals.
Fractional Laplace motion is nonstationary process, with stationary increments
characterized by Laplace distributions. The model by Meerschaert and Kozubowski
generates double or stretched exponential tails of increments pdfs, which are lighter

than Lévy but heavier than Gaussidteerschaert et al. (2004) cite examples of log



hydraulic conductivity data from four sites (including those from the Columbus Air
Force Base) and from the fields of finance and turbulence, to which the fLam provides
acceptable fits at intermediate rangdédags; Ganti et al. (2009) employed the model
for the interpretation of sediment transport data.

Powerlaw scaling is typically inferred from measurements by theaed
Method of MomentgMM). This method consists of calculating sample structure
functions @.1) for a finite sequencey, Qp, ..., 0, Of g values and for various lagsFor

each orden;, logS? is related tologs by linear regression, and the powey) is set

equal to the slope of the regression line. The literature shows that the (linear-or near
linear) variation oflogS} with logs is typically limited to intermediate ranges of
separation scales <s <g, wheres, ands, are (theoretical or empirical) lower and

upper limits, respectively. Breakdown in power law scaling is generally attributed, in

the literature, to noise and/or undersamplingopems (Tessier et al., 1993).

Benzi et al. (1993a, 1993b, 1996) discovered empirically that the range
S <s <g of separation scales over which velocities in fully developed turbulence
(where Kolmogorov's dissipation scake assumed t@ontrol s, ) scale according to

(2.2, can be enlarged significantly, at both small and large lags, through a procedure
they called Extended SelSimilarity (ESS). ESS arises from the observation that
structurefunctions of different orders) and m, computed for the same separation lag

are related by

S'(9° S(¥"" with b(nm=x K &7 (2.3)

Both the expressions 2.8 can be obtained fron2(2), simply upon rewriting the

latter asS*(9= Q &9 and SP(9= Q p &7, solving the first of these expressions
for sand substituting the result into the second dineas to be noted (Kozubowski and
Molz, 2011; Siena et al., 2012) that, whereéag)(implies (2.3 the reverse is generally

not true, being2.3) equivalent to
SHENER 2 (2.4)

wheref (s) is somefunction ofs.



Benzi et al. (1996) also iriduced a generalized form of ESS (GESS)
according to which

G™P(g)° GM(g/(Ran (2.5)
where

np - Sp(9 n,q - Sq(3 :X(p)' p/n ((r)
g T TP #Y

The exponentr (p, g, n) is a ratio betwen deviation®f structure functions of

orderp andq, respectively, from linear (morivactal or selaffine) scaling.

Nikora and Goring (2001) extended the application of ESS and GESS concepts
beyond turbulent velocity fields, to other geophysical pheena. Datasets of sand
wave dynamics, Martian topography, river morphometry, grbedl mobility and
atmospheric barometric pressure were found by these authors to exhibit ESS and GESS
scaling behavior within the whole range of scales investigated. Gluayrat al. (2010)
cite the success of ESS in extending observed scaling ranges, and thus allowing more

accurate empirical determinations of the functional exporwefaf) for turbulent

velocities. ESS has been reported to achievelaimesults also for diffusieiimited
aggregates, natural images, kinetic surface rougheioweenergy cosmic rays, cosmic
microwave background radiatiometatinsulator transition, irregularities in human
heartbeat time series, turbulence in edge m@zed plasma of fusiowlevices and
turbulent boundary | ayers of the Earthos

2011 and references therein).

In almost all cases where sufficient data are available to compute structure
functions of several orderarger than 2, whether by MM, ESS or GES§]) has been

found to vary in a nonlinear fashion with However, theoretical models able to
reproduce this trend, i.e. muftiactal and fLam models, failed to (a) reproduce the
ubiquitousbreakdown in powelaw scaling at small and large lags, observed on the
majority of data that exhibit powdaw scaling and (b) provide a rationale for the ability
of ESS to extend powdaw scaling on such lags.



Painter (2001) highlighted that two theotieal models could have the same
ensemble structure functions but very different frequency distributions of increments.
The latter is indeed another fundamental aspect in model identification issues. We
mentioned that fBm and fLm sediffine models respaweely predict normal and Lévy
stable distributions of increments; the mditictal model by Schertzer and Lovejoy
(1987) admits different increments distributions for different values of the Lévy index
a: normal (@ =2), Lévy-stable with unbounded singularitiqfd<a <2), Cauchy
(a=1) and Lévystable with bounded singularitie®<a <); fLam model have
increments tails represented by double or stretchednexyial. Spatial and/or temporal
increments of earth and environmental variables often appear to be Gaussian or heavy
tailed distributed (Kumar and Foufoulzeorgiou, 1993; Painter 1996; Yang et al.,
2009). However, in some cases, these distributions eviobi heavy tailed at small
lags (separation distances or scales) to-@arssian at larger lags (Liu and Moltz
1997b; Painter 2001; Ganti et al. 2009; Riva et al.3d0h phenomenon also observed
in fully developed turbulence (Boffetta et al. 200Bju and Molz (1997b) analyzed
spatial increments of log hydraulic conductivities measured with a borehole flowmeter
at Columbus Air Force Base, Mississippi. The authors show that increments follow an
a-stable distribution and applied two different meth@afsestimating the parameter
(quantile method of Fama and Roll, 1971 and charactefistation based methods by
Press, 1972). They noticed a monotonic increasthefstability index with the lag,

toward an asymptotic value sle to 2.

Painter (2001) analyzed incremental data of (log) electrical resistivity from an
Alaskan petroleum reservoir and permeability data from the Kuparuk River field in
Alaska (Gaynor et al. 2000), the Hawkesbury sandstone in Australia (Liu et a). 1996
and the Page formation in Utah (Goggin et al. 1992). Frequency distributions of all
incremental data exhibited heavy tails at small lags, some of which decayed toward
Gaussianity with increasing lag. The author developed for those data a model that was
able to predict an intermediate degree of variability between fBm and fLm. This new
model was achieved by randomizing the variance in a fBm, through a mathematical
process namedsubordination (Feller, 1971). Treating the data as if they were
subordinated tofBm through a lognormal subordinator, the author was able to
reproduce frequency distributions of increments associated with any lag. However, the

model failed to reproduce the automatic transition from one such distribution to another,



with changing lag A model that does transition automatically from hetailed to
Gaussian with increasing lag is the above mentioned fLam, by Meerschaert and
Kozubowski, which, in analogy to the subordination process adopted in R2i0dd),

is obtained by the subordition of a fBm to a Gamma process (Kozubowski et al.,
2006).

Riva et al. (2018 pointed out a weldocumented but heretofore little noticed
and unexplained phenomenon that whereas the frequency distribution of log
permeability data often seems to be Gaus®r nearly so (e.g. Ricciardi et al. 2005;
Paleologos and Sarris 2011), that of corresponding increments tends to exhibit heavy
tails which decay with separation distance or lag. Riva et al. illustrated the phenomenon
on 1:m scale log air permeabilitiesom pneumatic tests in 6 vertical and inclined
boreholes completed in unsaturated fractured tuff near Superior, Arizona (Guzman et al.
1996). Whereas fLam reproduce such behavior for data increments, the corresponding
model (Meerschaert et al., 2004; Kibowski et al., 2006) says nothing about the
distribution of the data themselves.

It is thus clear that no previously known model reproduces in a consistent
manner all of the following statistical and scaling behaviors exhibited by many earth
and environmetal data: nonlinear pow#aw scaling in a midrange of lags, breakdown
in powerlaw scaling at small and large lags, extension of pdaerscaling to all lags
via ESS, apparent lack of compatibility between sample frequencies of data and their
increments and decay of increment sample frequency tails with increased separation
scale or lag.

Recent work by Neuman (2010a, 2010b, 2011), Guadagnini et al. (2012), Riva
et al. (20138) and Neuman et al. (2013) reconciles all these features within a single
theoreical framework, which is based on the conceptroficated fractional Brownian
motion(tfBm) - introduced by Neuman (1990) and Di Federico and Neuman (1287)
well as on the notion of suBaussian fields (or processes) subordinated to tfBm, with
heavy ailed subordinators, such as dogrmal or Lévy. These authors have
demonstrated theoretically (Neuman, 2010a) and numerically (Neuman 2010b, 2011,
Guadagnini et al., 2012) that absolute increments of samples from such fields exhibit all
symptoms of multiractal scaling (most notably nonlinear scaling and intermittency) at
intermediate ranges of separation scales, with breakdown in {@wescaling at small

and large lags. As tfBm/tfLm are truncated versions of rfoactal, i.e. seHaffine and

10



additive,fBm/fLm, hence multifractal scaling of samples derived on tHesis must be
apparent/spuriousather than real. The authors concluded it to be, in fact, an artifact of
sampling.

Similar findings about apparent muitactal behavior of data have albeen
documented in various fieldBouchaud et al. (2000) found sample moments of
incremental financial time series data, generated by a Gaussiaifiselfmodel, to be
multi-fractal, although the theoretical series is ménaatal. Furthermore, Chechkand
Gonchar (2000) showed analytically and numerically that finite samples of symmetric
ordinary Lévy motion, i.e. seliffine random process with independent increments

scaling as poweH =1/a of incremental distance for afy<a <2, exhibited spurious

multi-fractality, with structure functions depending strongly on sample size and varying

erratically from sample to sample.

The present chapter is organized as follows: Secfidd) (s dedicatd to the
theoretical framework encompassing tfBm models and-Gaissian processes
subordinated to tfBm; Sectio.Q) illustrates an approach for the synthetic generation
of subGaussian tfBrsubordinated fields and investigates #ensitivity of the results
to the size of the sample and the number of realizations; in Se2td)rsiatistical and
scaling analysis is performed on two different-frmeability datasets (provided by
Tidwell and Wilson 1999aral b) investigating the consistency of the latter with the

theoretical models described in Sectigh2). Concluding remarks are presented in

Section 2.5).

11



2.2 Truncated fractional Brownian motion and subordinated sub-Gaussian

processes

Di Federico and Neuman (1997) showed that a fBm pro@{s§ (with x
generic spatial or temporal coordinate) can be constructed as the superimposition of
infinite statistically independent stationdiiglds (modes)G, (x /), weighted by their
pdf f (/):

G0 = /B (x/) (A d @.7)

Each modeG,(x,/) :<Gp( ))> +G,(x ) - whereGj(x,/) is the zeremean fluctuation
about the constant meéa@p(/)> - has normallydistributed stationary increments,
DG,(x /), and can be characterized by either exponential or Gaussian variograms,
with autocorrelation (or width scale / and sill SE( )=C %', whereC is a constant

(dimensionsgL*" ) andH is the Hurst exponent of the fBR(X).

The authors also investigated the effects of applyin@f9 {ower and upper
cut-off filters /, and/ ,, the first proportional to measurement support volumes and the
second to the window size, beyond which data are not sampled. They found that the

truncated hierarchy, namédincated fractbnal Brownian motior§tfBm)

1

G(x/,, {)=fep(x/) f,( Ad (2.8)
/i

is a stationary random field, with integral autocorrelation scale

1+2H 2H
2H /Mo }

< é):1+2H /- 29)
variance

s2( ()= 26 F (9 (2.10)
autocovariance

s (4 e W) (2.11)
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and truncated power variogram (TPV)
g|2(81 I/’ u)lz iz(g u) _/iz( S g)’ (212)

where, foom=1, u

s*(4)=AF/2H (2.13)
g(s L= 6§ .) (sk,) /1 i=lor: (2.14)
€ 4 s 6 & b6, .8 s
IAEE: = & 5 1G 24— O<H ¢2 (2.15)
ri(sl ) : e Q*Ee 6 1625, 4
e & ps 0 ps i 0.a & g
Bl e o Ty

And G ,Q is the incomplete gamma function. EquatioRd.?-2.16 point out

that the variogram of a tfBm is completely defined through four parameéteks: /,

and/,,.

In the limits of /, - O and/,- =, the TPV in R.12 converges to a power
variogram  (PV)  F#(s= A", where A=A@ 2H)/2H  and
A,=A(p/4)" G H)/2H for exponential (=1) and Gaussian(i=2) modes
respectively. It can be observed that, for fi¥edndH, the ratioA /A is larger than 1,
hence thesum of exponential modes increases more rapidly with thetlzgn does the
sum of Gaussian modes (Di Federico and Neuman, 188j0re @.1) compares PV
and TPVs based on Gaussian modes withl,H = 0.3,/, = 1 and two valuesf /, =
10°, 1¢* (all quantities are in consistent unit¥he slopes of the TPV and PV coincide
in a midrange of lags (labeled Zone 1) but not in the outlying ranges of small and large
lags (labeled Zone | and IIl, respectively). This break in powerskzaling at small and
large lags is due to the presence of lower and upper cutoffs, respectively. It follows that
estimatingH as the slope of the variogram onlog scale is valid at intermediate lags
but not at small and large lags which would leadpeesvely, to over and under

estimation of its value.
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Siena et al. (2012) showed trentralg-order moments of absolute values of

the corresponding Zemmean stationary increments
DG(s/,, {) =4(x & ,/,)! & x,, J) ofthettBmG(x/,, /) are gven by

€ |2 .
= 9 T.— f dd
Sq:<| m(s/,, é)|q> N2 ¢s .. 4) fa J}!!{\E Tas o q123.
} 1 if gis even
(2.17)

wheres is the lag, !! indicates double factorial definedgls=q(q 2)(q 4) 2if g
is even andg!! = q(q -2)(q 4) 3 if qis odd, andg? (s, / ) is the variogram of
G(x/,, {), whose analytical form is reported i122.16. For a PV(2.17) takes the

form

el .
s'=(| m(s/, ()) €a g2 A“g@*i\/,; faisodd 4 53

I 1 if gis even
(2.18)

rendering dinearlog-log dependencef Sversuss, with constant slopgH. As shown

by Figure 2.1) for the case ofg =2, the slopes of TP\Wased structure fictions are

similar to their P¥based counterparts in the midrange of lags, but are larger and

smaller, repectively, at small and large lags.

From @.17) it follows that the ratio between structure functions of ongek

) |
S [&(s /) ifqis odd
' q 4,2, 3.

%
|
s 0 2 g . .
= S, /oy if gis even
| I g(s b a (2.19)

which depends on the square root(f)l(s; h u)’. Using(2.17) to expressgz(s; b u)’

as a function ofS* and substituting the resulting equation it2dL9 yields to
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Figure 2.1 Power variogram (dashed curves) and trurttgtewer variogram (continuous curves)
evaluated witlA=1,H=0.3,i=2,/,=1 and/, = (a) 1 (b) 1¢". (After Siena et al., 2012).

1

p 1 2 gl . q 1l . .
\Fe[ ])” Lq _1)” g if gis odd
gutl = g4 23..
2 e 1

"? qll g .
T D (q N '(q 1)!!85 g if qis even (2.20)

This makes clear tha$™" is linear in S"on loglog scale, according t®2(3),

regardless of the model employed for the ngx(s A u)’ of G(x/,, [). The slope

of logS**vs. logS?, i.e. the exponenb(q+1,q), decreases asymptotically from 2 at

g=1toward 1 asg- @, as:
1
b(g+1,q) 4 ak q 2,3. (2.21)

Equation .20 shows that extended powlew scaling (ESS) atll lags is an intrinsic
property of tfBm processes. Moreoyaiith (2.3) valid at least on a midrange of lags,

the ESS exponend is equivalent to the ratio between scaling expongnts

b(q+1,q) 5% (2.22)

which, combined with (2.21), leads to

x@+h) _g 4 q =1,2,3.. B C) eonst (2.23)
x(q) a q
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predicting a linear behavior of(g) with g. Hence, deviations ob(gq+1,q) from (2.21)
are related with changes in slopexdfj) and can represent an index of apparent multi

fractality.

According toNeuman (2010b) and Guadagnini et al. (2012), -aoteelation
between increment)G(x%,,s/,, [) and DG(x,,s/,, /) for n>0and for a given lag

sis
gzgn+1)s; i /9-2‘2(93“ ) ‘f(%@)‘S“
- | u I u u 224
/'DG(nS /! u) ZQIZ(S, |/, u), ( )
which  converges, in the limts of /- O and /,- =&, to

I (ns) :(| n {IfH 2 ¢2H | 12H-) /2, the classical autocalation of fGn. A
necessary condition for sampt?g‘;qN ( s/, () to approximate the ensemble moment
<DG(S/., ()q>within the finite ranges¢ L, (i.e. for ergodicity of orden) is that its
integral scale be mucdmaller than the sizd,, of the sampling domain (e.g. Papoulis
(1984) pp. 250" 251), and the higher ig the more do sample statistics depart from
their ensemble counterparts. Neuman (2010a) provided a theoretical interprefation
the apparent muHiractal behavior by showing that, for B  (s/,, {) (always
finite) is proportional to the sum of autorrelated quantities raised to powers
dependent org; hence, settingggG"N(s/,, /) (9 U)X(q), would genertly render
x(g) nonlinear inq, with a deviation from linearity more and more pronounced as

increases and,, decreases.

A truncated fLm process,Y(X/,, [)=(Y(/,)) ™M(x, /) (where
Yi(x/,, [) represent the zermean fluctuation about the constant méh((n/“ ()) of
the hierarchy) aa be built on the basis of the same mathematical constructich8f (

(Di Federico and Neuman, 1997)
1y

CTANET ACIARA@ L (2.25)
/y

In particular, one can express the tfLm fluctuation in aGahssian form

Yix/,, [)=WG(ix /) (2.26)
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where W is ana/2-stable random variable, totally skewed to the right of zero with
width parameters,, :(cos%ﬁ)m, unit skewness and zero shift (Samorodnitsky and
Tagqu, 1994; Adler et al., 201B)dependent of the tfBm random fie@i(x /,, /). For

/, < cspatial (or temporal) increments

DY(x s/, {) =Y(x,/.)/ X x 3, ) /W [Ixs, ) (2.27)

are stationary zermean symmetric Lévy stable, characterizedlkya (2 and scale or

width function (Samorodnitsky and Taqqu, 1994, p. 89)
N aj2
s(s { J=8(® 1 ) (2.28)

Note that the same proceduné (2.252.26) can be followed byselecting a
subordinator WY%2 0 having a heawailed distribution other tharLévy, as, for
example, a logiormal pdf, which can be obtained upon settiiy’ = & with (V)=0
and(V?)=(2 -a)’.

From Q.27), it follows that whenever the subordinatév’? has finite moments
<W“’2> of all ordersq (as, for example, the legormal case), relationshgpbetween
structure functionsS’and TPV- or PV - variograms still holdbeing equal t¢2.17) - or
(2.19 - with a multiplicative term,(W¥?), on the right hand sides. ESS scaling is
hence straightforward, and the terg(q) = (W®?'?) /( W¥?) multiplies the right hand
sides of 2.19 and (2.20. It has to be noted that the quantitiéev?*) and
g(a) = (W) /(W) are dependent only on the choice of the subordinator, and not

on the lags. In case of a lognormal subordinator, evhave(W??) = expgd’ (2 -a ¥/ 2

and g(q) =expg( +21)(2 a §/ 2 .

A different proof is required when subordinators have divergent mament
<W“’2> of all ordersq? 2a, as does, for example, the Lévy subordinator with stability
index a .

Let Dy(Xn S/ £) =M % B/ O/ ¥ %i » O N=12,..N, (9 < ,be
one amongm=1,2,...,M < independent sets of increments of sampYe(dﬁnn;/,, 4)

values, y(xm;ll, 6) This could be the case of a temporal sequendé iodependent
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storm events or a spatial sequenceVbpermeability profiles measured in diféent

formations along a borehole. Here, a sample structure function can be computed, instead

of (2.1), as
X ol)=1E 1 3 / =1,2,3 2.29
Sovum (871 U‘ﬁglr(s) §| O % $ 1/ ) q=123. (2.29)

Writing  Dy(Xaw S/, {) =W & %, $ / ), where w, and Dg(X,.S/, {)

represent respectively samples/éand DG(S I, | ) , allows rewriting .29 as
/2 Np(s)

1M w e
%gY\,N,M(S/I’ A)Zﬁale m(S) ?‘ [d %n’ $ I/ u)

Since orderg? 2a moments ofw”? diverge while all moments ng(xm, s/, 4)

converge, one can approximage30 for sufficiently large sample sizeNm( ) by

l q=123.. (2.30)

~

%gY\vN,M(S/I’ %\W @ [Ii 3 / >

ef2 .

_alnx Q a 1.— if qis odd
avi’ §d(s /) adup "°

' b1 if gqis even

m=1

L]

?ﬁ

q=12,3.. (2.31)

which, for finite M, is always finite. From2.3]) it follows that the ratio between

sample structure functions of ordgfl andq is

a W(q+1/2 e\/_ q o(s ,/,)! if qis odd

Soviam (572 0) - (a- 1)
oD i, q=12,3.
Sovnm (871 av\,;/ 1I_ : - - if qis even
m=1
2.2)

or, in analogy t04.20),



1

M p 1 2 qll w0
éW(n?ﬁl) ])” U ) 1”gsTDY‘NM( . {) @ if qisodd

q+l ( )0 m=1
%DY\ N,M M

1 qz 9" i 1;; o
/_7 é(q _1)!! U(q 1)!!8§DY,N,M(S/I’ d) u if qiseven
q=12,3.. (2.33)

— =) —) ——

We found hence that ESS scaling at all lags is an intrinsic property of samples from sub
Gaussian processes subordinated to tfBm with substais (such as legormal)
which have finite moments of all ordegs and an approximate property of samples
from subGaussian processes subordinated to tfBm with subordinators (such as Lévy)

which have divergent moments of ordegé 2a . In both cases, the exponent of ESS

b(q+1,q) are expected to follow the trend predicted B21).

Figure @.2) reports sample structure functioﬁ%%N of three diferent orders
computed on the basis of TPV and B¥(s, / ), for samples extracted from a sub
Gaussian loghormal subordinated tfBm with parameters= 1.5,A=1,H=0.3,/,=1
and/, = 10° and 10. Analogousesults are collected fRigure 2.3) for a sub Gaussian
Lévy subordinated tfBm process, with parameters 1,H = 0.3,/, = 1 and/, = 10°
and two different values of the Léwydex: a = 1.2, 1.8. Structre functions%‘ng‘YNYM in
Figure .3 have been approximated, according 281, by usingM = 50000. All
plots show breakdown in powtaw scaling for large and small lags (Zones | ary I
and a common behavior of PV and TB&seds® within Zone II, as observed for tfBm.

Apparent multifractality of subGaussian random fields subordinated to tfBm,

as a consequence of lack of ergodicity, can be inferred by gemayalie discussion

reported above for tfBm fieldsSg, ( s/, ) and Sty w( S/, {) approximate the

ensemble counterparts to a lesser and lesser degyeecasases an decreases.
Setting Sf, \(s/,, ()" (¢ J9 or Shonm (87 () (9 J@renders

x(q) nonlinear ing, with an increasing nonlinear behavioMNadecreases.
On the other handyith w”? in (2.3]) statistically independent and identically

distributed, one should not expect the same effect of the number of s&mples
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Figure 2.2 Structure functionss’ of g = 1, 2, 3 computed on the basis afwer variogram (dashed
curves) and truncated power variogram (continuous curves) of-gagigsian randuo field subordinated
to tfBm with log:normal subordinatow”? PV and TPV have been evaluated witk 1,H = 0.3,i = 2,
/,=10 and/, = (a) 16 (b) 1¢*, wheread\*?hasU= 1.5.(After Neumaret al., 203B).
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Figure 2.3 Structure functionss’ of g = 1, 2, 3 computed on the basis afwer variogram (dashed
curves) and truncated power variogram (continuous curves) of-gasigsian random field subordinated
to t/Bm with Lévy subordinato*2 PV and TPV have been evaluated Witk 1,H=0.3,i =2,/, = 10
and/, = 10°, with M = 50000 samples, and Lévy index {&F 1.2 and (b)J= 1.8.(After Neumanret al.,
2013).
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2.3 Sub-Gaussian randomlygenerated fields subordinged to tfBm

A mono-dimensional random sequen@‘()g;/l, () withn=20, 1, 2, ...N,
constituting a discrete realization of the tfBm procé‘é(sx;/l, [) can be generated
using SGSIM, a sequential Gaussian simulation codéadDeutsch and Journel (1998)
modified to accommodate TPV2.022.16, and setting specific values for the
constitutive parameter&, H, /, and /,. The SGSIM code relies on the mulriate
Gaussian distributionAlternative algorithmswhich, as opposed to Gaussiaamsed
simulators, preserve different degrees of connectivity of extreme vadaes\(ski and
Maignan, 200% could be employed. As the key subject of the work is relatdtieto
occurrence of an underlying Gaussian process, we generate our fields by decoupling the
spatial distribution of the subordinator and the Gaussian process itself according to the

procedure described below

One way to achieve sampleg(x,,;/,, {) of subGaussian fieldsri(x/,, /)
subordinated to tfBm, relies on multiple realizations of tfByr(x.,.;/,, {), withm=1,
2, ...,M. For eachm, all theN elements of the tfBm sample are multiplied by a random

numberwy, , raised to the power 1/2, drawn from the distributiokbVof

Yi(%ui /10 £) = W2 (%0 /W) (2.34)

Note thatM must be large enough to provide a statistically meaningful samplan =
1, M, of endom subordinatad/ values.One may generate a sequentsamples
by setting Xg... Xy < Xppee- Xy <o Ky o--Km» WhEre s, =(x.. -x..,) is the smallest
lag of interest. For each realizatiom, the associated sequence of increments
DY( X S710 ) =M( % & / )/ XiX%s » () can be computed for any lag
s=ksg,,with k=1,2,....N. We generate sequences witf) =10*, based on an
exponential TPV characterized By= 1.0,H = 0.25,/, = 10*, and/, = 1, using two
different subordinatorsV (log-normal and Lévy distributed) assurgi@ =1.5 for both
cases. Figures2(4) and @.5 report sequences oYi(Xm;/l, 4) obtained with log
normal and Lévy subordinator respectively, by sethirg 10000 andvl = 100 (Figures
(2.49 and @.59) and the corresponding sequences of increm@m(sgm, s/, 4) with
lags s=10, 100 and 100§, (Figures R.4b-d) and @.5b-d)). Figure @.6) compares
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Figure 2.4. Sequences of (a) lagormal subordinated tfBm fieldyi(x i 4) generated withd =1.5,

mn

N = 10000,M = 100 and corresponding incremeqis(Xmn S, & &) with (b) s=10s, (c) s=100s, and
(d) s=1000s_ . (After Neuman et al., 2013).
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Figure 2.5.Sequences of (a) Lévy subordinated tlBm figidxn; &, &) generated witty= 1.5,0= 1.0,
b = 0.0 N =10000,M = 100 and corresponding incrememfy (Xmn, S, &, a,) with (b) s=10s_(c)
$=100s_ and (d)s=1000s_ . (After Neuman et al., 2013).
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Figure 2.6. Probability Density Functions (PDf incremental datay (Xmn S; &, &) from log-normal
subordinated tfBm fields, generated wigh=1.5, N = 10000,M = 1000 and fors =10, 100, 100G, .
(After Neuman et al., 2013).

frequency distributions of incremental seqgoes represented in Figureg.4b-d)
associated with logormal subordinator. The distributions are seen to broaden and
flatten with increasing lag. This is similar to the behavior exhibited by a model
subordinated to fBm (as compdr to our tfBm), with a loghormal subordinator,
considered by Painter (2001). The latter author shows that the behavior is caused by an
increase in the senviariance of the increments with lag.

Frequency distributions of Lévsubordinated tfBm sequencegi(x,.;/,, ()
plotted in Figure 2.59, are reported in Figure(7) for N = 10000 and for different
amounts of realizationd = 100 in Figure 2.79 and M = 1000 in Fgure @Q.7b)).
Sample pdfs are plotted together with thiaximum Likelihood (ML) fits with U
stable models and the pdfs obtained according to the generation parabet#rs,b =
e = 0 andll = 1). It can be observed that, for the smallstsample distribution
exaggerates tails and has a noticeable positive skewness; on the other hisind, as

increases, ML curve get closer to the generating one, as confirmed by the ML
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parameters estimates also reported in the figures. Frequency distributions of incremental
data, Dy(x,., s/, {) with s=10, 100 and 1008, associated with the casé¢ N =

10000 andM = 100 are collected in Figur.8ac). ML fit reveals, for each lag, a
symmetric distributions about zero, with an almost constant vallk, cfose to 1.36,

i.e. the estimate ob obtained in Figure2.79 foryi(x.,.:/, {). The same happens
considering increments distributions with = 1000 (not shown), where ML estimates

of Uturned out to be 1.40 fas=10s,, and 1.39 fors=100 and 100&; . . Figure 2.9)
provides a detailed analysis of the tails of increments sample frequency distributions
with N = 10000 andv = 1000. ML estimates (based on the entiigribution) and
generating pdfs associated witkstable subordinatorg =1.5) are also reported. The
closeup look, on loglog scale, highlights that the tails of generating pdfs are steeper

than their ML counterparts. This is probably due to undersampling problems.

ML estimates ofthe scale parametér - indicated in Figure4.8) - increases
with s, implying distributions to broaden and flatten as the lag increases. Fiju@e (
reports, on logog scale, ML estimates (symbols) alnted for 8 different lags, together
with the plot of the (square root of ) generating TPV (solid line): valuésesfimated
from increments distributions are in very good agreement with their theoretical
counterparts given by2(28). Furthermore, as highlighted by the povaaw~ trend
represented with a dashed line in the figure, the slope displayed by the scale parameter
at intermediate lags (0.254) is close to the generating value of the Hurst expbrent (
0.25).

2.3.1 Apparent multi -fractality of sub-Gaussian random fields subordinated to
tfBm

As mentioned in Sectior2(2), a necessary condition for ergodicity gpbrder
moments requires the integral scale of autocorrelation to be much smaller tisazethe
of the sampling domain.Furthermore,sample structure function deviation from
ensemble momentsecome more important as the ordgincreases, giving rise to a

nonlinear behavioof the scaling exponen{q) vsq (i.e. apparent muHiractality) if
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Figure 2.7. Probability Density Functions (PDF) &fstable subordinated tfBm fieldg, (Xnn ; &, @)
generated withO= 1.5,0=1.0,6= 0.0,N = 10000 and (aly! = 100 and (bM = 1000.

Figure 2.8. Probabiity Density Functions (PDF) dhcremen sequencey(x ,S;/,, /) of Ustable
subordinated tfBm fieldg' (Xmn; &, &) generated with)= 1.5,( = 1.0,6 = 0.0,N = 10000,M = 100 and
(@) s=10s,, (b) s=100s, and (c)s=1000s, .

min
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