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ABSTRACT 

The work is aimed at providing some insights on the variability of hydrological 

properties in porous media, focusing in particular on permeability. We consider an 

approach which combines scaling and statistical analyses of air-permeability datasets 

with pore-scale numerical simulations of flow through porous media. The former 

investigation allows to characterize permeability heterogeneity at the centimeter 

observation scale; the latter provides a description of heterogeneity on a millimeter scale 

by resolving physical processes occurring at the microscopic scale and deriving up-

scaled quantities. Scaling and statistical analyses performed on synthetic permeability 

distributions as well as on datasets collected on real media support the identification of 

truncated fractional Brownian motion (tfBm) or truncated fractional Gaussian noise 

(tfGn) and of sub-Gaussian random processes subordinated to tfBm (or tfGn) as viable 

models for the interpretation of hydrological properties variability. Pore-scale numerical 

solutions of flow (i.e., in terms of velocity and pressure distributions) are performed on 

both randomly generated samples and real porous media reconstructed via X-ray Micro-

Tomography. Different approaches for the enforcement of boundary conditions at the 

fluid-solid interface provide qualitatively similar results in terms of both microscopic 

and averaged quantities.  
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RIASSUNTO 

La presente tesi ha come principale obiettivo lo studio della variabilità di proprietà 

idrologiche in mezzi porosi, con particolare attenzione alla permeabilità. A tal fine, ci si 

avvale di un approccio che combina l'analisi di proprietà statistiche e di scaling 

applicata a dataset di permeabilità, con lo studio di risultati numerici di simulazioni di 

flusso alla microscala in mezzi porosi. Con la prima analisi è possibile caratterizzare 

variazioni di permeabilità alla scala di misura (tipicamente dell'ordine del centimetro), 

mentre la seconda analisi dà una descrizione dell'eterogeneità di permeabilità ad una 

scala inferiore (nell'ordine del millimetro), ottenuta risolvendo processi fisici alla scala 

dei pori e derivando le quantità integrali di interesse. L'analisi statistica e di scaling, 

effettuata sia su distribuzioni di permeabilità sintetiche, sia su dataset raccolti su 

campioni reali, avvalora la validità dei modelli truncated fractional Brownian motion 

(tfBm) e truncated fractional Gaussian noise (tfGn), o di processi random sub-Gaussiani 

ad essi subordinati, per l'interpretazione della variabilità di proprietà idrologiche. 

Soluzioni numeriche di campi di flusso (i.e. velocità e pressione) alla scala dei pori sono 

ottenute sia per campioni sintetici, sia per campioni reali, la cui geometria è ricostruita 

mediante micro-tomografia a raggi X. Diverse metodologie di applicazione delle 

condizioni al contorno in corrispondenza dell'interfaccia liquido-solido forniscono 

risultati qualitativamente simili sia in termini di quantità microscopiche, sia in termini di 

quantità medie. 
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Chapter 1  

Introduction  and outline  

Understanding the nature of observed variability of aquifer and reservoirs 

hydraulic properties is a key issue which plays a major role on the assessment of the 

impact of anthropogenic activities on soil systems, for example, in terms of strategies 

for groundwater management and development or oil and gas recovery procedures. 

Efforts aimed at characterization of heterogeneity of aquifer systems typically focus on 

the identification of appropriate models, which are then employed to interpret the key 

features of the investigated hydraulic properties, on the basis of experimental datasets. 

The problem is properly tackled within a stochastic framework. The characterization of 

underground systems is complex, hydraulic parameters exhibit statistical features 

varying with characteristic length-scales, e.g. measurement support, measurement 

resolution, scale of observation, spatial correlation and size of the sampled domain 

(Neuman & Di Federico, 2003). Heretofore, in the literature, most of the attempts to 

explain such scale dependencies have focused on the investigation of power-law scaling 

behavior characterizing statistical moments of distributions of spatial increments.  

An issue faced with the hydrological characterization performed on the basis of 

experimental measurements lies in the fact that the range of scales that can be 

investigated is limited by the data support. The latter is typically much larger compared 

to the characteristic pore scale governing flow/transport processes. Furthermore, another 

key issue arises from the lack of an unambiguous method to estimate the support scale 

associated with measurements (Goggin et al., 1988; Tartakovsky et al., 2000; Molz et 

al., 2003; Neuman and Di Federico, 2003).  

On the other hand, recent developments in pore-scale modeling and imaging 

techniques are contributing to render pore-scale numerical simulation of flow and 

transport processes a viable approach to predict (up-scaled) hydraulic/hydrological 
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properties. The high level of resolution achievable through X-ray micro-tomography for 

natural rocks reconstruction enables effective modeling of physical processes at the pore 

scale. In this context, the investigation of the feedback between pore-scale physics and 

macroscopic properties is of key relevance for porous media characterization. Methods 

for pore-scale flow simulation can be classified as either pore-network, particle-based or 

grid-based models. Concerning single-phase flows, grid-based models are commonly 

preferred, since they allow to preserve pore-space geometry together with numerical 

efficiency (Blunt et al., 2012; Zaretskyi et al., 2010). 

The dissertation comprises two main parts, devoted to permeability 

characterization in porous media respectively by means of statistical and multi-scale 

analysis and pore-scale flow modeling. 

Chapter 2 focuses on statistical and scaling analysis. A new scheme for the 

generation of synthetic permeability distributions is presented, showing its consistency 

with the statistical and scaling features of earth and environmental variables. The 

method allows to generate samples of sub-Gaussian random fields subordinated to 

truncated fractional Brownian motion (tfBm) with heavy tailed subordinators (log-

normal or Lévy). Different methods (method of moments, M, Extended Self Similarity, 

ESS, and a generalized version thereof, GESS) all relying on q
th
-order sample structure 

functions of increments, have been employed to assess the scaling features of synthetic 

permeability fields, generated with the above mentioned scheme, and of experimental 

permeability datasets, collected on the faces of real rock samples (Topopah Spring tuff 

and Berea Sandstone).  

Chapter 3 is dedicated to pore-scale flow modeling. Three different approaches 

for the numerical simulation of single-phase, fully-saturated flows have been assessed to 

characterize small scale permeability values. Simulations have been performed on 

synthetic samples, as well as on real rock samples. All approaches adopted belong to the 

class of grid-based methods and rely on a stair-step approximation of the domain. The 

most essential difference among the models consists in the boundary condition 

enforcement at the fluid-solid interface: the effectiveness of a volume-penalizing 

Immersed Boundary method, embedded in the EULAG software environment (Prusa et 

al., 2008), has been tested in comparison with a Body-Fitted stair-step meshing strategy 

and a ghost-cell Immersed Boundary method, respectively embedded in the ANSYS 
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FLUENT (ANSYS FLUENT, 2009) and STOKES (Sarkar et al., 2002). The 

mathematical formulation of the problem relies on the set of time-dependent, 

incompressible Stokes (STOKES model) and Navier-Stokes (ANSYS FLUENT and 

EULAG models) equations. The results obtained from the three methods have been 

compared in terms of local flow fields characteristics (distributions of Eulerian velocity 

components and pressure) and macroscopic quantities (Darcy flux and permeability).  

Chapter 4 provides an overview of the most relevant results and highlights the 

conclusions of the study.  
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Chapter 2  

Scaling and statistical analysis of 

permeability data 

2.1  State of the art in scaling and statistical analyses of earth and environmental 

variables 

Many earth and environmental variables exhibit statistical features varying 

with characteristic length (or time) scales associated with the set of measurements. 

Neuman and Di Federico (2003), focusing on hydrogeologic variables, observed 

isotropic and directional dependencies upon scales of measurement (data support), 

observation (extent of phenomena such as a dispersing plume), sampling window 

(domain of investigation), spatial correlation (structural coherence), and spatial 

resolution (descriptive detail).  

The analysis of such scale dependencies is typically related with the 

examination of power-law behavior of structure functions of the investigated variables, 

such as (log) permeability or (log) hydraulic conductivity (e.g. Neuman, 1990, 1994; 

Painter, 1996; Liu and Molz, 1997a,b; Tennekoon et al., 2003), space-time inýltration 

(Meng et al., 2006), river runoff (Koscielny-Bunde et al., 2006) and streamflows 

(Movahed and Hermanis, 2008; Zhang et al., 2008, 2009), rain-drop sizes and positions 

(Lilley et al., 2006), soil properties (Caniego et al., 2005; Zeleke and Si, 2006, 2007), 

electrical resistivity, natural gamma ray and spontaneous potential (Yang et al., 2009), 

sediment transport data (Ganti et al., 2009; Singh et al., 2011) and precipitation 

(Pashalis et al., 2012).   

Let ( )Y x  be the variable of interest, defined on a continuum of points x (either 

space or time). Variations of such variable (i.e. increments) between two points located 
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at a given separation scale s (i.e. lag), ( ) ( ) ( )n n nY s Y x s Y xD = + - , are used to compute q-

order sample structure functions  

( )

1

1
( ) ( )

( )

N s
qq

nN
n

S s Y s
N s =

= Dä   (2.1) 

Where N(s) is the number of incremental data ( )nY sD  for the given lag s (for simplicity 

we limit our mathematical description to one dimension and our analysis of data to non-

negative values of q). 

With power-law behavior it is meant that 

( )( ) qq
NS s sx´   (2.2) 

where ( )qx  is the scaling exponent of the power-law. The way with which this 

exponent varies with the order q of the structure function is typically associated with 

different types of scaling: a linear dependence of ( )qx  on q indicates a self-affine 

(mono-fractal) random process; a non-linear behavior of ( )qx  is traditionally interpreted 

as an index of a multi-fractal random process. The class of mono-fractal fields is 

regarded to be fundamentally different from that of multi-fractal fields, the former being 

originated by additive and the latter by multiplicative random fields (or processes). 

Any non-stationary process, with stationary increments, characterized by a 

power variogram ( ) Hs sa ag ´ , belongs to the class of self-affine processes. When

2a= , such field forms a fractional Brownian motion (fBm), its increments are 

characterized by Gaussian distributions and its power variogram, ( )sag , coincides with 

the semi-structure function of order 2; when 0 2a< <, the field is said to form a 

fractional Lévy motion (fLm), its increments are distributed according to a zero-mean, 

symmetric Lévy-stable model and statistical moments (and then the ensemble structure 

functions) of this distribution are divergent for all orders q a> . The parameter H 

included in the expression of the power variogram represents the Hurst exponent: 

increments of fBm and fLm, which are said to form respectively fractional Gaussian 

noise (fGn) and fractional Lévy noise (fLn), display long-range dependence 

(persistence) when 1H a>  and negative dependence (anti-persistence) when 1H a< .  
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FBm and fLm processes respectively entail ordinary Brownian and Lévy 

motions as particular cases, when increments are uncorrelated (i.e. 1H a= ). Among 

many other variables that appear to be self-affine, we mention the planar projections of 

(i) drainage basin boundaries and main channels as functions of their Eulerian lengths; 

(ii ) characteristic drainage area lengths, breadths and inverse densities as functions of 

total channel length; and (iii ) vegetative cover and mean steady-state soil moisture as 

functions of area-weighted distance from the channel outlet (Rodríguez-Iturbe and 

Rinaldo, 1997; Caylor et al., 2005; Neuman, 2009).  

In the multi-fractal context, processes are associated with a non-linear behavior 

of the scaling exponent. However, there is no known universally valid expression for 

( )qx  (Monin and Yaglom, 1975; Lovejoy and Schertzer, 1995; Veneziano et al., 2006; 

Fraysse, 2007). Functional forms of ( )qx  have been investigated theoretically by Qian 

(2000) and Nikora (2005). Analogy to Richardsonôs (1922) concept of multiplicative 

energy cascades, firstly introduced in the context of turbulence (Kolmogorov, 1962; 

Obukhov 1962) has led Schertzer and Lovejoy (1987) to write ( ) ( )q qH K qx = -  and 

express ( )K q  explicitly in terms of H, the Lévy index a and a codimension, 

proportional to the variance of the Gaussian distribution when 2a= , and to the width 

of the zero-mean, symmetric Lévy-stable distribution when 0 2a< <. This 

multiplicative cascade model, termed universal by the authors, suggests that (1)H x= ; 

others approximate H by d dqx  near 0q= . This model have been applied by some of 

the above mentioned authors (Liu and Molz, 1997a,b; Tennekoon et al., 2003; Meng et 

al., 2006; Koscielny-Bunde et al., 2006; Lilley et al., 2006; Zeleke and Si, 2006, 2007) 

for the scaling analysis of diverse collections of data.  

Meerschaert et al. (2004) and Kozubowski et al. (2006) developed a model 

based on fractional Laplace motions (fLam), which predicts scaling exponents ( )qx  to 

vary in a non-linear fashion with q, in a manner similar to that of multi-fractals. 

Fractional Laplace motion is a non-stationary process, with stationary increments 

characterized by Laplace distributions. The model by Meerschaert and Kozubowski 

generates double or stretched exponential tails of increments pdfs, which are lighter 

than Lévy but heavier than Gaussian. Meerschaert et al. (2004) cite examples of log 
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hydraulic conductivity data from four sites (including those from the Columbus Air 

Force Base) and from the fields of finance and turbulence, to which the fLam provides 

acceptable fits at intermediate ranges of lags; Ganti et al. (2009) employed the model 

for the interpretation of sediment transport data. 

Power-law scaling is typically inferred from measurements by the so-called 

Method of Moments (MM). This method consists of calculating sample structure 

functions (2.1) for a finite sequence, q1, q2, ..., qn, of q values and for various lags s. For 

each order qi, log iq

NS  is related to logs by linear regression, and the power( )iqx  is set 

equal to the slope of the regression line. The literature shows that the (linear or near-

linear) variation of log iq

NS  with logs is typically limited to intermediate ranges of 

separation scales, I IIs s s< < , where Is  and IIs  are (theoretical or empirical) lower and 

upper limits, respectively. Breakdown in power law scaling is generally attributed, in 

the literature, to noise and/or undersampling problems (Tessier et al., 1993). 

Benzi et al. (1993a, 1993b, 1996) discovered empirically that the range 

I IIs s s< <  of separation scales over which velocities in fully developed turbulence 

(where Kolmogorov's dissipation scale is assumed to control Is ) scale according to 

(2.2), can be enlarged significantly, at both small and large lags, through a procedure 

they called Extended Self-Similarity (ESS). ESS arises from the observation that 

structure functions of different orders, n and m, computed for the same separation lag 

are related by  

( , )( ) ( )      with     ( , ) ( ) ( )n m n mS s S s n m n mb b x x´ =  (2.3) 

Both the expressions in (2.3) can be obtained from (2.2), simply upon rewriting the 

latter as ( )( ) ( )q qS s C q sx=  and ( )( ) ( )p pS s C p sx= , solving the first of these expressions 

for s and substituting the result into the second one. It has to be noted (Kozubowski and 

Molz, 2011; Siena et al., 2012) that, whereas (2.2) implies (2.3) the reverse is generally 

not true, being (2.3) equivalent to 

( )( ) ( )q qS s f sx´   (2.4) 

where ( )f s is some function of s.  
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Benzi et al. (1996) also introduced a generalized form of ESS (GESS) 

according to which 

, , ( , , )( ) ( )n p n q p q nG s G sr´   (2.5) 

where 

,

/

( )
( )

( )

p
n p

n p n

S s
G s

S s
=       ,

/

( )
( )

( )

q
n q

n q n

S s
G s

S s
=

          

( ) ( )
( , , )

( ) ( )

p p n n
p q n

q q n n

x x
r

x x

-
=

-
 (2.6) 

The exponent ( , , )p q nr  is a ratio between deviations of structure functions of 

order p and q, respectively, from linear (mono-fractal or self-affine) scaling.  

Nikora and Goring (2001) extended the application of ESS and GESS concepts 

beyond turbulent velocity fields, to other geophysical phenomena. Datasets of sand 

wave dynamics, Martian topography, river morphometry, gravel-bed mobility and 

atmospheric barometric pressure were found by these authors to exhibit ESS and GESS 

scaling behavior within the whole range of scales investigated. Chakraborty et al. (2010) 

cite the success of ESS in extending observed scaling ranges, and thus allowing more 

accurate empirical determinations of the functional exponent ( )qx  for turbulent 

velocities. ESS has been reported to achieve similar results also for diffusion-limited 

aggregates, natural images, kinetic surface roughening, low-energy cosmic rays, cosmic 

microwave background radiation, metal-insulator transition, irregularities in human 

heartbeat time series, turbulence in edge magnetized plasma of fusion devices and 

turbulent boundary layers of the Earthôs magnetosphere (see Guadagnini and Neuman, 

2011 and references therein).  

In almost all cases where sufficient data are available to compute structure 

functions of several orders larger than 2, whether by MM, ESS or GESS, ( )qx  has been 

found to vary in a nonlinear fashion with q. However, theoretical models able to 

reproduce this trend, i.e. multi-fractal and fLam models, failed to (a) reproduce the 

ubiquitous breakdown in power-law scaling at small and large lags, observed on the 

majority of data that exhibit power-law scaling and (b) provide a rationale for the ability 

of ESS to extend power-law scaling on such lags.  
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Painter (2001) highlighted that two theoretical models could have the same 

ensemble structure functions but very different frequency distributions of increments. 

The latter is indeed another fundamental aspect in model identification issues. We 

mentioned that fBm and fLm self-affine models respectively predict normal and Lévy-

stable distributions of increments; the multi-fractal model by Schertzer and Lovejoy 

(1987) admits different increments distributions for different values of the Lévy index 

a: normal ( 2)a= , Lévy-stable with unbounded singularities (1 2)a< < , Cauchy 

( 1)a=  and Lévy-stable with bounded singularities (0 1)a< <; fLam model have 

increments tails represented by double or stretched exponential. Spatial and/or temporal 

increments of earth and environmental variables often appear to be Gaussian or heavy-

tailed distributed (Kumar and Foufoula-Georgiou, 1993; Painter 1996; Yang et al., 

2009). However, in some cases, these distributions evolve from heavy tailed at small 

lags (separation distances or scales) to near-Gaussian at larger lags (Liu and Moltz 

1997b; Painter 2001; Ganti et al. 2009; Riva et al., 2013a), a phenomenon also observed 

in fully developed turbulence (Boffetta et al. 2008). Liu and Molz (1997b) analyzed 

spatial increments of log hydraulic conductivities measured with a borehole flowmeter 

at Columbus Air Force Base, Mississippi. The authors show that increments follow an 

a-stable distribution and applied two different methods for estimating the parameter a 

(quantile method of Fama and Roll, 1971 and characteristic-function based methods by 

Press, 1972). They noticed a monotonic increase of the stability index with the lag, 

toward an asymptotic value close to 2.  

Painter (2001) analyzed incremental data of (log) electrical resistivity from an 

Alaskan petroleum reservoir and permeability data from the Kuparuk River field in 

Alaska (Gaynor et al. 2000), the Hawkesbury sandstone in Australia (Liu et al. 1996) 

and the Page formation in Utah (Goggin et al. 1992). Frequency distributions of all 

incremental data exhibited heavy tails at small lags, some of which decayed toward 

Gaussianity with increasing lag. The author developed for those data a model that was 

able to predict an intermediate degree of variability between fBm and fLm. This new 

model was achieved by randomizing the variance in a fBm, through a mathematical 

process named subordination (Feller, 1971). Treating the data as if they were 

subordinated to fBm through a log-normal subordinator, the author was able to 

reproduce frequency distributions of increments associated with any lag. However, the 

model failed to reproduce the automatic transition from one such distribution to another, 



  

10 
 

with changing lag. A model that does transition automatically from heavy-tailed to 

Gaussian with increasing lag is the above mentioned fLam, by Meerschaert and 

Kozubowski, which, in analogy to the subordination process adopted in Painter (2001), 

is obtained by the subordination of a fBm to a Gamma process (Kozubowski et al., 

2006). 

Riva et al. (2013a) pointed out a well-documented but heretofore little noticed 

and unexplained phenomenon that whereas the frequency distribution of log 

permeability data often seems to be Gaussian or nearly so (e.g. Ricciardi et al. 2005; 

Paleologos and Sarris 2011), that of corresponding increments tends to exhibit heavy 

tails which decay with separation distance or lag. Riva et al. illustrated the phenomenon 

on 1-m scale log air permeabilities from pneumatic tests in 6 vertical and inclined 

boreholes completed in unsaturated fractured tuff near Superior, Arizona (Guzman et al. 

1996). Whereas fLam reproduce such behavior for data increments, the corresponding 

model (Meerschaert et al., 2004; Kozubowski et al., 2006) says nothing about the 

distribution of the data themselves. 

It is thus clear that no previously known model reproduces in a consistent 

manner all of the following statistical and scaling behaviors exhibited by many earth 

and environmental data: nonlinear power-law scaling in a midrange of lags, breakdown 

in power-law scaling at small and large lags, extension of power-law scaling to all lags 

via ESS, apparent lack of compatibility between sample frequencies of data and their 

increments, and decay of increment sample frequency tails with increased separation 

scale or lag. 

Recent work by Neuman (2010a, 2010b, 2011), Guadagnini et al. (2012), Riva 

et al. (2013a) and Neuman et al. (2013) reconciles all these features within a single 

theoretical framework, which is based on the concept of truncated fractional Brownian 

motion (tfBm) - introduced by Neuman (1990) and Di Federico and Neuman (1997) - as 

well as on the notion of sub-Gaussian fields (or processes) subordinated to tfBm, with 

heavy tailed subordinators, such as log-normal or Lévy. These authors have 

demonstrated theoretically (Neuman, 2010a) and numerically (Neuman 2010b, 2011; 

Guadagnini et al., 2012) that absolute increments of samples from such fields exhibit all 

symptoms of multi-fractal scaling (most notably nonlinear scaling and intermittency) at 

intermediate ranges of separation scales, with breakdown in power-law scaling at small 

and large lags. As tfBm/tfLm are truncated versions of mono-fractal, i.e. self-affine and 



  

11 
 

additive, fBm/fLm, hence multi-fractal scaling of samples derived on their basis must be 

apparent/spurious rather than real. The authors concluded it to be, in fact, an artifact of 

sampling. 

 Similar findings about apparent multi-fractal behavior of data have also been 

documented in various fields: Bouchaud et al. (2000) found sample moments of 

incremental financial time series data, generated by a Gaussian self-affine model, to be 

multi-fractal, although the theoretical series is mono-fractal. Furthermore, Chechkin and 

Gonchar (2000) showed analytically and numerically that finite samples of symmetric 

ordinary Lévy motion, i.e. self-affine random process with independent increments 

scaling as power 1H a=  of incremental distance for any 0 2a< <, exhibited spurious 

multi-fractality, with structure functions depending strongly on sample size and varying 

erratically from sample to sample. 

The present chapter is organized as follows: Section (2.2) is dedicated to the 

theoretical framework encompassing tfBm models and sub-Gaussian processes 

subordinated to tfBm; Section (2.3) illustrates an approach for the synthetic generation 

of sub-Gaussian tfBm-subordinated fields and investigates the sensitivity of the results 

to the size of the sample and the number of realizations; in Section (2.4) statistical and 

scaling analysis is performed on two different log-permeability datasets (provided by 

Tidwell and Wilson 1999a and b) investigating the consistency of the latter with the 

theoretical models described in Section (2.2). Concluding remarks are presented in 

Section (2.5). 
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2.2  Truncated fractional Brownian motion and subordinated sub-Gaussian 

processes  

Di Federico and Neuman (1997) showed that a fBm process ( )G x  (with x 

generic spatial or temporal coordinate) can be constructed as the superimposition of 

infinite statistically independent stationary fields (modes) ( , )pG xl , weighted by their 

pdf ( )pf l :  

0

( ) ( , ) ( )p pG x G x f dl l l
¤

=ñ   (2.7) 

Each mode ( , ) ( ) ( , )p p pG x G G xl l l¡= +  - where ( , )pG xl¡  is the zero-mean fluctuation 

about the constant mean ( )pG l  - has normally-distributed stationary increments, 

( , )pG xlD , and can be characterized by either exponential or Gaussian variograms, 

with autocorrelation (or width-) scale l and sill 
2 2( ) H

p Cs l l= , where C is a constant 

(dimensions 2HL-è øê ú) and H is the Hurst exponent of the fBm ( )G x . 

The authors also investigated the effects of applying to (2.7) lower and upper 

cut-off filters ll and ul, the first proportional to measurement support volumes and the 

second to the window size, beyond which data are not sampled. They found that the 

truncated hierarchy, named truncated fractional Brownian motion (tfBm) 

( ; , ) ( , ) ( )
u

l

l u p pG x G x f d

l

l

l l l l l=ñ   (2.8) 

is a stationary random field, with integral autocorrelation scale  

( )
1 2 1 2

2 2

2
,

1 2

H H

u l
l u H H

u l

H
I

H

l l
l l

l l

+ +-
=
+ -

  (2.9) 

variance 

( ) ( ) ()2 2 2,l u u ls l l s l s l= -  , (2.10) 

autocovariance 

( ) ( )2 2, ; ,l u i l uss l l g l l-  , (2.11) 
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and truncated power variogram (TPV) 

( ) ( ) ( )2 2 2; , ; ;i l u i u i ls s sg l l g l g l= - ,  (2.12) 

where, for m = l, u  

( )2 2 / 2H

m mA Hs l l=   (2.13) 

( ) ( ) ( )2 2; /          1 or 2i m m i ms s ig l s l r l= =   (2.14) 

( )
2

1 / 1 exp 1 2 ,

H

m

m m m

s s s
s Hr l

l l l

è øå õ å õ å õ
é ù= - - + G -æ ö æ ö æ ö
é ùç ÷ ç ÷ ç ÷ê ú

            0 1 2H< <  (2.15) 

( )
2 2 2

2 2 2 2
/ 1 exp 1 ,

4 4 4

H

m

m m m

s s s
s H

p p p
r l

l l l

è øå õ å õ å õ
é ù= - - + G -æ ö æ ö æ ö
é ùç ÷ ç ÷ ç ÷ê ú

     0 1H< < (2.16) 

And ( , )G ÖÖ is the incomplete gamma function. Equations (2.12-2.16) point out 

that the variogram of a tfBm is completely defined through four parameters: A, H, ll 

and ul. 

 In the limits of 0ll­  and ul­¤, the TPV in (2.12) converges to a power 

variogram (PV) 2 2( ) H

i is Asg = , where ( )1 1 2 / 2A A H H= G -  and 

( ) ( )2 4 1 / 2
H

A A H Hp= G -  for exponential ( 1)i=  and Gaussian ( 2)i=  modes 

respectively. It can be observed that, for fixed A and H, the ratio 1 2A A  is larger than 1, 

hence the sum of exponential modes increases more rapidly with the lag s than does the 

sum of Gaussian modes (Di Federico and Neuman, 1997). Figure (2.1) compares PV 

and TPVs based on Gaussian modes with A = 1, H = 0.3, ll = 1 and two values of lu = 

10
3
, 10

4
 (all quantities are in consistent units). The slopes of the TPV and PV coincide 

in a midrange of lags (labeled Zone II) but not in the outlying ranges of small and large 

lags (labeled Zone I and III, respectively). This break in power law scaling at small and 

large lags is due to the presence of lower and upper cutoffs, respectively. It follows that 

estimating H as the slope of the variogram on log-log scale is valid at intermediate lags 

but not at small and large lags which would lead, respectively, to over- and under-

estimation of its value.  
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Siena et al. (2012) showed that central q-order moments of absolute values of 

the corresponding zero-mean stationary increments 

( ; , ) ( ; , ) ( ; , )l u l u l uG s G x s G xl l l l l lD = + -  of the tfBm ( ; , )l uG xl l are given by 

( ) ( ) ( )2

2

; , 2 ; , 1 !! 1, 2,3...

1

q
qq

l u l u

if q is odd
S G s s q q

if q is even

l l g l l p

ë
îè ø= D = - =ìê ú
î
í

 (2.17) 

where s is the lag, !! indicates double factorial defined as ( )( )!! 2 4 2q q q q= - - » if q 

is even and ( )( )!! 2 4 3q q q q= - - » if q is odd, and ( )2 ; ,l usg l l is the variogram of 

( ; , )l uG xl l, whose analytical form is reported in (2.12-2.16). For a PV, (2.17) takes the 

form  

( ) ( )
2

; , 1 !! 2 1, 2, 3...

1

qqq qH

l u i

if q is odd
S G s q A s q

if q is even

l l p

ë
îè ø= D = - =ìê ú
î
í

 
 

 (2.18) 

rendering a linear log-log dependence of
 qS versus s, with constant slope qH. As shown 

by Figure (2.1) for the case of 2q= , the slopes of TPV-based structure functions are 

similar to their PV-based counterparts in the midrange of lags, but are larger and 

smaller, respectively, at small and large lags.  

From (2.17) it follows that the ratio between structure functions of order q+1 

and q is  

( )
( )

( )
( )

2

1

2

!!
; ,

1 !!
1, 2, 3...

2 !!
; ,

1 !!

l u
q

q

l u

q
s if q is odd

qS
q

qS
s if q is even

q

p g l l

g l l
p

+

ë
î -î
= =ì
î
î -í  (2.19)

 

which depends on the square root of ( )2 ; ,l usg l l. Using (2.17) to express ( )2 ; ,l usg l l 

as a function of 
qS  and substituting the resulting equation into (2.19) yields to 
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Figure 2.1. Power variogram (dashed curves) and truncated power variogram (continuous curves) 

evaluated with A = 1, H = 0.3, i = 2, ll = 1 and lu = (a) 10
3
 (b) 10

4
. (After Siena et al., 2012). 

( ) ( )

( ) ( )

1

1
1

1

1

1
1

1 !!

2 2 1 !! 1 !!
1, 2, 3...

2 1 !!

1 !! 1 !!

q
q q

q

q
q q

q
S if q is odd

q q
S q

q
S if q is even

q q

p p

p

+

+

+

ë
è øî è øé ù ê úî - -î ê ú

= =ì
î è ø
î è øé ù ê úî - -ê úí

 (2.20)

 

This makes clear that 
1qS +
 is linear in 

qS on log-log scale, according to (2.3), 

regardless of the model employed for the TPV ( )2 ; ,l usg l l of ( ; , )l uG xl l. The slope 

of 1log qS +vs. log qS , i.e. the exponent ( 1, )q qb + , decreases asymptotically from 2 at 

1q=  toward 1 as q­¤, as: 

1
( 1, ) 1         1, 2, 3...q q q

q
b + = + =   (2.21) 

Equation (2.20) shows that extended power-law scaling (ESS) at all lags is an intrinsic 

property of tfBm processes. Moreover, with (2.3) valid at least on a midrange of lags, 

the ESS exponent bis equivalent to the ratio between scaling exponents x 

( )
( 1)

1,
( )

q
q q

q

x
b

x

+
+ =  (2.22) 

which, combined with (2.21), leads to 

( 1) 1 ( )
     1, 2, 3...      

( )

q q q
q const

q q q

x x

x

+ +
= = ­ =   (2.23) 
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predicting a linear behavior of ( )qx with q. Hence, deviations of ( 1, )q qb +  from (2.21) 

are related with changes in slope of ( )qx and can represent an index of apparent multi-

fractality.  

According to Neuman (2010b) and Guadagnini et al. (2012), auto-correlation 

between increments, ( , ; , )n l uG x sl lD  and 0( , ; , )l uG x sl lD  for 0n> and for a given lag 

s is  

( )
( ) ( ) ( )

( )

2 2 2

2

1 ; , 2 ; , 1 ; ,
; ,

2 ; ,

i l u i l u i l u

G l u

i l u

n s ns n s
ns

s

g l l g l l g l l
r l l

g l l
D

+ - + -è ø è øê ú ê ú=  (2.24) 

which converges, in the limits of 0ll­  and ul­¤, to 

( )( )2 2 2
1 2 1 / 2

H H H

G
ns n n nr

D
= + - + - , the classical autocorrelation of fGn. A 

necessary condition for sample ( ),
; ,q

l uG N
S sl l
D

 to approximate the ensemble moment 

( ); ,
q

l uG sl lD within the finite range us L¢  (i.e. for ergodicity of order q) is that its 

integral scale be much smaller than the size, uL , of the sampling domain (e.g. Papoulis 

(1984) pp. 250 ï 251), and the higher is q the more do sample statistics depart from 

their ensemble counterparts. Neuman (2010a) provided a theoretical interpretation of  

the apparent multi-fractal behavior by showing that, for tfBm, ( ),
; ,q

l uG N
S sl l
D

 (always 

finite) is proportional to the sum of auto-correlated quantities raised to powers 

dependent on q; hence, setting ( ) ( )
()

,
; , /

qq

l u uG N
S s s

x
l l l

D
´ , would generally render 

( )qx  nonlinear in q, with a deviation from linearity more and more pronounced as q 

increases and uL decreases.  

A truncated fLm process, ( ; , ) ( , ) ( ; , )l u l u l uY x Y Y xl l l l l l¡= +  (where 

( ; , )l uY xl l¡  represent the zero-mean fluctuation about the constant mean ( , )l uY l l  of 

the hierarchy) can be built on the basis of the same mathematical construction of (2.8) 

(Di Federico and Neuman, 1997) 

( ; , ) ( , ) ( )
u

l

l u p pY x Y x f d

l

l

l l l l l=ñ   (2.25) 

In particular, one can express the tfLm fluctuation in a sub-Gaussian form 

1 2( ; , ) ( ; , )l u l uY x W G xl l l l¡ ¡=   (2.26) 
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where W is an 2a -stable random variable, totally skewed to the right of zero with 

width parameter ( )
2/

4
cosW

a
pas = , unit skewness and zero shift (Samorodnitsky and 

Taqqu, 1994; Adler et al., 2010) independent of the tfBm random field ( ; , )l uG xl l¡ . For 

ul<¤ spatial (or temporal) increments 

( ) ( ) ( ) ( )1/2, ; , ; , ; , , ; ,l u l u l u l uY x s Y x Y x s W G x sl l l l l l l lD = - + = D   (2.27) 

are stationary zero-mean symmetric Lévy stable, characterized by 1 2a< ¢ and scale or 

width function (Samorodnitsky and Taqqu, 1994, p. 89) 

( ) ( )
2

2; , ; ,l u i l us s
a

as l l g l lè ø=ê ú (2.28) 

Note that the same procedure of (2.25-2.26) can be followed by selecting a 

subordinator 
1/2 0W ²  having a heavy-tailed distribution other than Lévy, as, for 

example, a log-normal pdf, which can be obtained upon setting 
1/2 VW e=  with 0V =  

and ( )
22 2V a= - .  

From (2.27), it follows that, whenever the subordinator 
1/2W  has finite moments 

/2qW  of all orders q (as, for example, the log-normal case), relationships between 

structure functions 
qS and TPV - or PV - variograms still hold, being equal to (2.17) - or  

(2.18) - with a multiplicative term, /2qW , on the right hand sides. ESS scaling is 

hence straightforward, and the term ( 1)/2 /2( ) q qg q W W+=  multiplies the right hand 

sides of (2.19) and (2.20). It has to be noted that the quantities /2qW  and 

( 1)/2 /2( ) q qg q W W+=  are dependent only on the choice of the subordinator, and not 

on the lag s. In case of a log-normal subordinator, we have /2 2 2exp (2 ) 2qW q aè ø= -ê ú 

and 2( ) exp (1 2 )(2 ) 2g q q aè ø= + -ê ú . 

A different proof is required when subordinators have divergent moments 

/2qW  of all orders 2q a² , as does, for example, the Lévy subordinator with stability 

index a.  

Let ( ) ( ) ( ), ; , ; , ; ,mn l u mn l u mn l uy x s y x s y xl l l l l lD = + - , ()1,2,..., mn N s= <¤, be 

one among 1,2,...,m M= <¤independent sets of increments of sampled ( ); ,mn l uY x l l 

values, ( ); ,mn l uy x l l. This could be the case of a temporal sequence of M independent 
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storm events or a spatial sequence of M permeability profiles measured in different 

formations along a borehole. Here, a sample structure function can be computed, instead 

of (2.1), as 

( )
()

( )
()

, ,
1 1

1 1
; , , ; ,

mN sM
qq

l u mn l uY N M
m nm

S s y x s
M N s

l l l l
D

= =

= Dä ä         1,2,3...q=   (2.29) 

Writing ( ) ( )1 2, ; , , ; ,mn l u m mn l uy x s w g x sl l l lD = D , where mw  and ( ), ; ,mn l ug x sl lD  

represent respectively samples of W and ( ); ,l uG sl lD , allows rewriting (2.29) as  

( )
()

( )
()/2

, ,
1 1

1
; , , ; ,

mN sqM
qq m

l u mn l uY N M
m nm

w
S s g x s

M N s
l l l l

D
= =

= Dä ä         1,2,3...q=  (2.30)  

Since order 2q a²  moments of 1/2

mw  diverge while all moments of ( ), ; ,mn l ug x sl lD  

converge, one can approximate (2.30) for sufficiently large sample sizes ()mN s  by 

( ) ( )

( ) ( )

/2

, ,
1

/2 2

1

1
; , ; ,

2
1

2 ; , 1 !!

1

M
qq q

l u m l uY N M
m

M q
q

m i l u

m

S s w G s
M

if q is odd
w s q

M
if q is even

l l l l

g l l p

D
=

=

å õ
º Dæ ö
ç ÷

ë
å õ îè ø= - ìæ öê úç ÷ î

í

ä

ä

1,2,3...q=   (2.31) 

which, for finite M, is always finite. From (2.31) it follows that the ratio between 

sample structure functions of order q+1 and q is 

 

( )

( )

( )

( )
( )

( )
( )

21 /2
1

, , 1

/2 2, ,

1

!!
; ,

; , 1 !!

2 !!; ,
; ,

1 !!

M
q

i l uq m
l uY N M m

Mq
ql uY N M
m i l u

m

q
s if q is oddw

S s q

qS s
w s if q is even

q

p g l l
l l

l l
g l l

p

+
+

D =

D

=

ë
î -î

º ì
î
î -í

ä

ä
1,2,3...q=  

 (2.32)  

or, in analogy to (2.20), 
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( )

( )

( ) ( )
( )

( ) ( )
( )

1
1

1

1 /2
, ,

1 1

, , 1
/2 1

1

1
, ,

1 !!
; ,

2 2 1 !! 1 !!
; ,

2 1 !!
; ,

1 !! 1 !!

q
M q qq

l uY N M
m

q m
l uY N M M

q
q

m q q
m l uY N M

q
S s if q is oddw q q

S s

w q
S s if q is even

q q

p p
l l

l l

l l
p

+

+
D

+ =

D

+

=
D

ë
è øî è øé ùî ê ú- -î ê ú

º ì
î è ø
î è øé ù ê úî - -ê úí

ä

ä

1,2,3...q=  (2.33) 

We found hence that ESS scaling at all lags is an intrinsic property of samples from sub-

Gaussian processes subordinated to tfBm with subordinators (such as log-normal) 

which have finite moments of all orders q, and an approximate property of samples 

from sub-Gaussian processes subordinated to tfBm with subordinators (such as Lévy) 

which have divergent moments of orders 2q a² . In both cases, the exponent of ESS, 

( 1, )q qb +  are expected to follow the trend predicted by (2.21).  

 Figure (2.2) reports sample structure functions 
,

q

Y N
S
D

 of three different orders 

computed on the basis of TPV and PV ( )2

2 ; ,l usg l l, for samples extracted from a sub- 

Gaussian log-normal subordinated tfBm with parameters a = 1.5, A = 1, H = 0.3, ll = 1 

and lu = 10
3
 and 10

4
. Analogous results are collected in Figure (2.3) for a sub- Gaussian 

Lévy subordinated tfBm process, with parameters A = 1, H = 0.3, ll = 1 and lu = 10
3 
 

and two different values of the Lévy-index: a = 1.2, 1.8. Structure functions 
, ,

q

Y N M
S
D

 in 

Figure (2.3) have been approximated, according to (2.31), by using M = 50000. All 

plots show breakdown in power-law scaling for large and small lags (Zones I and III) 

and a common behavior of PV and TPV-based qS  within Zone II, as observed for tfBm. 

Apparent multi-fractality of sub-Gaussian random fields subordinated to tfBm, 

as a consequence of lack of ergodicity, can be inferred by generalizing the discussion 

reported above for tfBm fields: ( ),
; ,q

l uY N
S sl l
D

 and ( ), ,
; ,q

l uY N M
S sl l
D

 approximate the 

ensemble counterparts to a lesser and lesser degree as q increases and N decreases.  

Setting ( ) ( )
()

,
; , /

qq

l u uY N
S s s

x
l l l

D
´  or ( ) ( )

()
, ,

; , /
qq

l u uY N M
S s s

x
l l l

D
´ renders 

( )qx  nonlinear in q, with an increasing nonlinear behavior as N decreases. 

On the other hand, with /2q

mw  in (2.31) statistically independent and identically 

distributed, one should not expect the same effect of the number of samples M.  
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Figure 2.2. Structure functions S
q
 of q = 1, 2, 3 computed on the basis of power variogram (dashed 

curves) and truncated power variogram (continuous curves) of a sub-gaussian random field subordinated 

to tfBm with log-normal subordinator W
1/2

. PV and TPV have been evaluated with A = 1, H = 0.3, i = 2, 

ll = 10 and lu = (a) 10
3
 (b) 10

4
 , whereas W

1/2 
has Ŭ = 1.5. (After Neuman et al., 2013). 

 

Figure 2.3. Structure functions S
q
 of q = 1, 2, 3 computed on the basis of power variogram (dashed 

curves) and truncated power variogram (continuous curves) of a sub-gaussian random field subordinated 

to tfBm with Lévy subordinator W
1/2

. PV and TPV have been evaluated with A = 1, H = 0.3, i = 2, ll = 10 

and lu = 10
3
 , with M = 50000 samples, and Lévy index (a) Ŭ = 1.2 and (b) Ŭ = 1.8. (After Neuman et al., 

2013). 
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2.3  Sub-Gaussian randomly-generated fields subordinated to tfBm 

A mono-dimensional random sequence ( ); ,n l ug x l l¡ , with n = 0, 1, 2, ..., N, 

constituting a discrete realization of the tfBm process ( ); ,l uG xl l¡ , can be generated 

using SGSIM, a sequential Gaussian simulation code due to Deutsch and Journel (1998) 

modified to accommodate TPVs (2.12-2.16), and setting specific values for the 

constitutive parameters A, H, ll and ul. The SGSIM code relies on the multivariate 

Gaussian distribution. Alternative algorithms which, as opposed to Gaussian-based 

simulators, preserve different degrees of connectivity of extreme values (Kanevski and 

Maignan, 2004) could be employed. As the key subject of the work is related to the 

occurrence of an underlying Gaussian process, we generate our fields by decoupling the 

spatial distribution of the subordinator and the Gaussian process itself according to the 

procedure described below.  

One way to achieve samples ( ); ,mn l uy x l l¡  of sub-Gaussian fields ( ); ,l uY xl l¡  

subordinated to tfBm, relies on multiple realizations of tfBm, ( ); ,mn l ug x l l¡ , with m = 1, 

2, ..., M. For each m, all the N elements of the tfBm sample are multiplied by a random 

number wm , raised to the power 1/2, drawn from the distribution of W 

( ) ( )1/2; , ; ,mn l u m mn l uy x w g xl l l l¡ ¡=   (2.34) 

Note that M must be large enough to provide a statistically meaningful sample, wm , m = 

1, 2, é M, of random subordinator W values. One may generate a sequence of samples 

by setting 
10 1 20 2 0... ... ... ...N N M MNx x x x x x< < < , where ( )min 1mn mns x x -= -  is the smallest 

lag of interest. For each realization m, the associated sequence of increments 

( ) ( ) ( ), ; , ; , ; ,mn l u mn l u mn l uy x s y x s y xl l l l l l¡ ¡D = + -  can be computed for any lag 

mins ks= with 1,2,...,k N= . We generate sequences with 4

min 10s -= , based on an 

exponential TPV characterized by A = 1.0, H = 0.25, ll = 10
-4

, and lu = 1, using two 

different subordinators W (log-normal and Lévy distributed) assuming 1.5a=  for both 

cases. Figures (2.4) and (2.5) report sequences of ( ); ,mn l uy x l l¡  obtained with log-

normal and Lévy subordinator respectively, by setting N = 10000 and M = 100 (Figures 

(2.4a) and (2.5a)) and the corresponding sequences of increments ( ), ; ,mn l uy x sl lD  with 

lags min10,  100 and 1000 s s=  (Figures (2.4b-d) and (2.5b-d)). Figure (2.6) compares  
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Figure 2.4. Sequences of (a) log-normal subordinated tfBm field, ( ); ,
mn l u

y x l l¡ generated with 1.5a= , 

N = 10000, M = 100 and corresponding increments ȹy (xmn, s; ɚl, ɚu) with (b) 
min

10s s= (c) 
min

100s s= and 

(d) 
min

1000s s= . (After Neuman et al., 2013).  

 

Figure 2.5. Sequences of (a) Lévy subordinated tfBm field, y' (xmn ; ɚl, ɚu) generated with Ŭ = 1.5, ů = 1.0, 

ɓ = 0.0, N = 10000, M = 100 and corresponding increments ȹy (xmn, s; ɚl, ɚu) with (b) 
min

10s s= (c) 

min
100s s= and (d) 

min
1000s s= . (After Neuman et al., 2013). 
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Figure 2.6. Probability Density Functions (PDF) of incremental data ȹy (xmn, s; ɚl, ɚu) from log-normal 

subordinated tfBm fields, generated with 1.5a= , N = 10000, M = 1000 and for 
min

10,  100, 1000 s s= . 

(After Neuman et al., 2013). 

frequency distributions of incremental sequences represented in Figures (2.4b-d) 

associated with log-normal subordinator. The distributions are seen to broaden and 

flatten with increasing lag. This is similar to the behavior exhibited by a model 

subordinated to fBm (as compared to our tfBm), with a log-normal subordinator, 

considered by Painter (2001). The latter author shows that the behavior is caused by an 

increase in the semi-variance of the increments with lag.  

Frequency distributions of Lévy-subordinated tfBm sequence ( ); ,mn l uy x l l¡  

plotted in Figure (2.5a), are reported in Figure (2.7) for N = 10000 and for different 

amounts of realizations (M = 100 in Figure (2.7a) and M = 1000 in Figure (2.7b)). 

Sample pdfs are plotted together with their Maximum Likelihood (ML)  fits with Ŭ-

stable models and the pdfs obtained according to the generation parameters (Ŭ = 1.5, ɓ = 

ɛ = 0 and ů = 1). It can be observed that, for the smallest M, sample distribution 

exaggerates tails and has a noticeable positive skewness; on the other hand, as M 

increases, ML curve get closer to the generating one, as confirmed by the ML 
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parameters estimates also reported in the figures. Frequency distributions of incremental 

data, ( ), ; ,mn l uy x sl lD  with min10,  100 and 1000 s s=  associated with the case of  N = 

10000 and M = 100 are collected in Figure (2.8a-c). ML fit reveals, for each lag, a 

symmetric distributions about zero, with an almost constant value of Ŭ , close to 1.36, 

i.e. the estimate of Ŭ obtained in Figure (2.7a) for ( ); ,mn l uy x l l¡ . The same happens 

considering increments distributions with M = 1000 (not shown), where ML estimates 

of Ŭ turned out to be 1.40 for min10 s s=  and 1.39 for min100 and 1000 s s= . Figure (2.9) 

provides a detailed analysis of the tails of increments sample frequency distributions 

with N = 10000 and M = 1000. ML estimates (based on the entire distribution) and 

generating pdfs associated with Ŭ-stable subordinator ( 1.5a= ) are also reported. The 

close-up look, on log-log scale, highlights that the tails of generating pdfs are steeper 

than their ML counterparts. This is probably due to undersampling problems.  

ML estimates of the scale parameter ů - indicated in Figure (2.8) - increases 

with s, implying distributions to broaden and flatten as the lag increases. Figure (2.10) 

reports, on log-log scale, ML estimates (symbols) obtained for 8 different lags, together 

with the plot of the (square root of ) generating TPV (solid line): values of ů estimated 

from increments distributions are in very good agreement with their theoretical 

counterparts given by (2.28). Furthermore, as highlighted by the power-law trend 

represented with a dashed line in the figure, the slope displayed by the scale parameter 

at intermediate lags (0.254) is close to the generating value of the Hurst exponent (H = 

0.25).  

2.3.1  Apparent multi -fractality of sub-Gaussian random fields subordinated to 

tfBm 

As mentioned in Section (2.2), a necessary condition for ergodicity of q-order 

moments requires the integral scale of autocorrelation to be much smaller than the size 

of the sampling domain. Furthermore, sample structure function deviation from 

ensemble moments become more important as the order q increases, giving rise to a 

non-linear behavior of the scaling exponent ɝ(q) vs q (i.e. apparent multi-fractality) if  
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Figure 2.7.  Probability Density Functions (PDF) of Ŭ-stable subordinated tfBm fields, y' (xmn ; ɚl, ɚu) 

generated with  Ŭ = 1.5, ů = 1.0, ɓ = 0.0, N = 10000 and (a) M = 100 and (b) M = 1000.  

 

Figure 2.8. Probability Density Functions (PDF) of increment sequences ( ); ,,
mn l u

y x sl lD  of Ŭ-stable 

subordinated tfBm fields y' (xmn ; ɚl, ɚu) generated with Ŭ = 1.5, ů = 1.0, ɓ = 0.0, N = 10000, M = 100 and 

(a) 
min

10s s= (b) 
min

100s s= and (c) 
min

1000s s= .  




































































































































































































































