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Summary 

Freight transportation is generally a very complex domain where several players, 

each with its own set of objectives, act and operate at various decisional levels. 

There are different players in the field. The shippers who decide how much of each 

commodity to move from every origin to every destination and the means by which 

the goods will be moved. The carriers who respond to this transportation demands 

and route freight over the actual transportation network under their control. Finally, 

the government defined as the set of international, national and local authorities 

involved in any way with freight transportation via regulation and the provision of 

transportation infrastructure. In this work, we consider the case where only one 

shipper determines the demand for transportation over a network. However, he 

cannot decide fiow levels on arcs in a fully independent way due to the presence of a 

second agent controlling some links of the network and optimizing her own objective 

function. This situation is modelled as a game between two players P and Q acting 

on the same network G. Player P fixes the fiows on the arcs of Gin such a way that 

their divergence at some given nodes (sources and sinks) is equal to prescribed values. 

Such divergences may represent demand and availability levels for some commodity. 

On the other hand, player Q decides the values of the maximum capacities of some 

arcs of the network. Both players are interested in the fact that the connectivity 

between the sources and the sinks in the network is respected, i.e., they bot h want 

that the goods can reach their destination. However, they have different objectives. 

Player P aims at minimizing the transportation costs, whereas player Q aims at 

maximizing her profit (or, in generai, her utility) t ha t is proportional t o the fiow 

3 



passing through the arcs under her control. Note that, in general, the profit of player 

Q is not assumed to be equal to the cast of player P far the same are. Such game 

between players P and Q is modelled as a minimum cast flow problem for player P, 

where the are costs are given and the player Q decides the are capacities. 

The modelling of the games under investigation are mainly based upon three 

different research lines. First, the players understand the freight transportation 

system as a system where the actors involved do not act simultaneously and they 

explicitly take into account the sequential nature of the interactions among them. 

Second, they play a (hierarchical) game aver a flow network which causes severe 

limitations and constraints to their action sets. Finally, the games exhibit linear 

characteristics and can be solved using bilevel linear programming. All these issues 

have already been discussed in the scientific literature, even though in different 

separate contexts. The merging of three mentioned approaches in only one single 

framework is a major contribution of our modelling perspective. Furthermore, bilevel 

programming is rich of theoretical results and numerical algorithms, but is scare in 

actual applications. From this point of view, the present work might be considered 

as an interesting addition to the field. 

Bilevel noncooperative games in which one player ( called the leader) declares his 

strategy first and enforces i t o n the other players (calle d the followers) w ho react 

(rationally) to the leader's decision are referred to as Stackelberg games. Since the 

payoff functions and all the constraints in our Stackelberg games may be expressed in 

a linear form, these games will be formalized as bilevellinear programming problems 

(BLPPs). In general, bilevel programming problems are diffi.cult to sol ve because 

of their inherent non-convexity and non-differentiability. To face their NP-hard 

nature, we identify some properties of the game solutions which allow us to define a 

heuristic algorithm restricting its (local) search on the set of the Nash equilibrium 

points. The optimal solution of any BLPP lies on a vertex of the leader's inducible 

region. Relying on this result, we develop an algorithm which allows to move from 

a starting point of the shipper's inducible region to another point in the shipper's 
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inducible region always providing a better solution for him. When no further better 

points may be attained, the algorithm stops. Unfortunately, only a local optimum is 

identified. The rationale behind the algorithm stems from the consideration that the 

optimal solution for our BLPP is also a Nash equilibrium point. In particular, the 

algorithm moves from a Nash equilibrium point to another better Nash equilibrium 

point of the BLPP under study. 

This framework may describe, as an example, the situation where restrictions 

are imposed by some alpine country on the number of trucks allowed to cross it by 

road each year. A different context involving the presence of a second agent on the 

shipper's network occurred when the International Transporters' Association (UND) 

of Thrkey had to face when the war in the Balkans started. This situation motivates 

our investigation on hierarchical noncooperative network games. The road freight 

traffic from Turkey to Centrai and Western Europe and viceversa suffered major 

disruptions because of the war in Balkans during the nineties. UND is the shipper 

controlling the quasi-totality of this traffic thus assuming the role of player P. H e 

had to cope with an "adverse entity" able to modify the available capacity on some 

specific links his vehicles had to pass through. The region involved in the conflict 

may be represented as a connected subnetwork disconnecting the origin and the 

destinations of the road transportation network since alternative road routes are 

not easily affordable. Other possibilities, like the seaborne links now operating, did 

not exist at that time. Hence the whole freight traffic was performed using a single 

mode of transport. The models developed in this work allow the shipper to perform 

a worst-case analysis at the strategie level for this situation assuming that player Q 

wishes to maximize the costs he has to afford when going through the region under 

her control. In fact, it is meaningless to talk about the utility or the profit the war 

may seek to maximize. However, it becomes a sensible modelling when the utility of 

player Q is strictly related to the costs afforded by player P on this portion of the 

network. If player Q is maximizing her utility which corresponds to player P's costs, 

automatically she plays to maximize player P's costs. Hence the model represents 
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a worst-case analysis for player P. 

A simple graph composed of 99 nodes and 181 arcs is presented. Player P 

controls a subnetwork composed of 100 arcs. The others 81 links representing the 

connections within the Balkans and Eastern Europe forma connected subnetwork. 

Only the main road links ha ve been considered ( motorways or highways). The 

capacities are calculated taking into account the total number of transit permits 

available for each country. This figure is annually fixed in bilatera! Joint Committee 

Meetings. Player P's costs are the average generalized costs derived as a function of 

lengths and transfer times in the physical links. Player Q does not have profits or 

losses for the flows passing through the P zone and it is also assumed that the profits 

she earns for each unit of flow going through the arcs under her control are equal 

to the costs afforded by the shipper when traversing these arcs. All the relevant 

data required to calculate these figures are collected in the UND Annual Sector 

Report 1997-98 (1999). The heuristic algorithm has been tested on this network 

and its results have been compared with the outcome obtained by using an exact 

enumeration procedure. Since i t turns out that the percentage error of the heuristic 

algorithm is equal to 0,3%, we may claim that its performances are certainly highly 

satisfactory, at least in this specific example. 

Different extensions of the models and the algorithm developed may be easily 

envisaged both from the theoretical and the application side. These advances would 

provide either faster local or global search algorithms either more complete models 

representing in deeper detail the actual system and the interactions among the actors 

involved. Hence a decision support system for the shipper's decision making process 

at the strategie level can be built and effectively used by freight transportation 

practitioners. 
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Esposizione riassuntiva 

Ogni sistema di trasporto delle merci si presenta generalmente molto articolato 

e complesso: in particolare l'esistenza di numerosi soggetti che, a diverso livello 

e con diversi obiettivi, sono tenuti ad operare decisioni rappresenta un elemento 

che influisce in maniera spesso importante sull'assetto del sistema stesso. Il lavoro 

prende in esame un sistema di trasporto merci con due attori, denominati P e Q, 

che attraverso le rispettive decisioni determinano l'assetto dei flussi sulla rete. Il 

soggetto P, in particolare, è incaricato di soddisfare una data domanda di trasporto 

(ad esempio espressa mediante una matrice O /D data) e può decidere come ripartire 

i flussi su una rete multimodale della quale percepisce i tratti fondamentali. Al 

momento della sua decisione, P conosce il costo generalizzato degli archi della rete 

e cerca di minimizzare il costo totale del trasporto. Inoltre il giocatore P deve 

rispettare le decisioni del giocatore Q. Il giocatore Q, che controlla una porzione della 

rete che connette le origini alle destinazioni di P, invece conosce il profitto unitario 

che deriva dal transito veicolare sui suoi archi e cerca di massimizzare il proprio 

profitto complessivo. Nel far questo può modificare la capacità degli archi della sua 

sottorete, ma anch'egli deve comunque soddisfare la condizione di bilanciamento ai 

nodi e deve rispettare le decisioni di P. 

Quale primo elemento di originalità del presente lavoro può essere considerato il 

tentativo di condensare in un unico approccio alcuni elementi presenti singolarmente 

in filoni diversi. Infatti, tra i modelli della letteratura che intendono rappresentare 

esplicitamente le dinamiche decisionali interattoriali si ricordano i modelli multi

attoriali sequenziali, i giochi su rete e la programmazione lineare bilivello i quali 
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formano il quadro di riferimento in cui la presente lavoro si inserisce. 

Il quadro attoriale appena delineato offre l'opportunità di affrontare una serie 

di problemi diversi, nel campo dell'affidabilità della rete, a seconda dell'ordine con 

il quale i due giocatori decidono. Infatti il caso in cui la decisione di P preceda 

quella di Q può essere significativo, per P, al fine di valutare la peggiore situazione 

che potrebbe presentarsi per effetto di Q una volta stabilito l'assetto dei flussi sulla 

propria rete. È questo un tipico esempio della cosiddetta "worst case analysis". 

Viceversa, se gioca prima Q, P riesce a determinare il migliore assetto dei propri 

flussi nel rispetto di vincoli imposti da Q su una parte della rete interposta tra la sua 

origine e la destinazione. Si pensi ad esempio alla problematica dell'attraversamento 

di Paesi, quali Austria e Svizzera, che impongono severe limitazioni per i veicoli 

pesanti. 

Il problema descritto viene formulato come un gioco su rete nel quale i due 

giocatori, P e Q, non cooperano tra loro. Si ottiene così una formulazione di pro

grammazione lineare bilivello (BLP) dove il giocatore che gioca per primo è il leader, 

mentre l'altro assume il ruolo di follower. Ricordando che i problemi BLP sono NP

hard, è stato sviluppato ed implementato un algoritmo euristico di ricerca della 

soluzione ottima. Sfruttando però l'osservazione che, nel particolare caso in que

stione, la soluzione ottima del problema BLP è anche un punto di equilibrio di Nash, 

l'algoritmo restringe la sua ricerca nell'insieme dei punti di equilibrio di Nash. Da 

un punto di equilibrio di Nash si passa ad un altro corrispondente ad una soluzione 

"migliore" per il leader fino a quando l'algoritmo non si ferma. Purtroppo però non 

si è sempre in grado di determinare un ottimo globale, ma solamente un ottimo 

locale individuando così, nel caso sia P a giocare per primo, un limite superiore alla 

soluzione ottima. 

Lo studio di tale modello è stato motivato dalla volontà di rappresentare, con 

riferimento al sistema del trasporto merci su gomma tra la Turchia e l'Europa Oc

cidentale, la situazione che si è venuta a creare nella regione dei Balcani a causa 

dei recenti eventi bellici. Tra le due regioni, annualmente, si registra un traffico 
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dell'ordine delle centinaia di migliaia di veicoli commerciali. Per ragioni di sem

plicità, si è fatto riferimento alla sola componente verso l'Europa, fermo restando 

che la direzione opposta potrebbe essere analizzata in maniera del tutto analoga. 

Nell'esempio affrontato, la domanda di trasporto delle merci, che viene misurata in 

numero di veicoli all'anno, e che si sposta con origini diverse nel Sud-Est asiatico 

e destinazioni pure diverse nell'Europa Occidentale, è stata concentrata in due sole 

polarità (l origine e l destinazione). Nel sistema appena descritto l'Associazione In

dustriali della nazione di origine (UND) svolge il ruolo di decisore centrale ed è stata 

assimilata al giocatore P di cui sopra. In breve, nota la domanda da trasportare, 

l'UND decide la distribuzione delle merci tra vari percorsi sulla rete che collega 

l'origine (Turchia) alla destinazione (Europa occidentale). Conosce pure il costo 

generalizzato degli archi di tale rete e opera le proprie decisioni con l'obiettivo di 

rendere minimo il costo del trasporto. L'evento bellico ha causato, come riflesso su 

detto sistema, una decisa modifica alla capacità degli archi di una porzione della rete 

stradale iniziale, che garantiva la connessione tra origine e destinazione. Alcuni archi 

sono stati eliminati (la rispettiva capacità posta pari a zero), altri hanno subito una 

netta riduzione della capacità, o un significativo aumento del costo generalizzato. 

La guerra quindi ha assunto un comportamento analogo a quello del giocatore Q. 

In questo caso però, non ha significato parlare di un'utilità che la guerra cerca di 

massimizzare secondo quanto esposto in precedenza, a meno che non si proceda ad 

assimilare l'utilità del giocatore Q con i costi di P: se Q gioca per massimizzare la 

propria utilità e quest'ultima corrisponde ai costi di P, automaticamente Q gioca 

per massimizzare i costi di P e il modello acquista proprio il significato di una analisi 

del caso peggiore per P. 

La rete considerata è stata semplificata in accordo con il livello di dettaglio 

delle informazioni di cui dispone P ed è formata da 99 nodi e 181 archi, di cui 

solamente 100 sotto il controllo di P. Gli altri 81 archi, concentrati nella regione 

dei Balcani, sono sotto il controllo di Q e costituiscono una sottorete connessa, che 

disconnette l'origine dalla destinazione. La capacità degli archi è stata determinata 
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in accordo con il numero dei permessi di transito annui che ogni Stato concede ai 

veicoli turchi. Tale numero viene annualmente definito, mediante contrattazione tra 

le parti, in accordi bilaterali. In questa fase non si è tenuto conto delle differenti 

tipologie di permessi. In accordo con alcune necessarie ipotesi semplificative, la 

rete stessa è aciclica. I valori del costo per veicolo percepito da parte di P per 

transitare sugli archi della sottorete propria od altrui rispettivamente, sono stati 

determinati come funzione del costo monetario, della lunghezza fisica dell'arco e del 

tempo di percorrenza, tenendo in considerazione le varie voci che concorrono alla 

formazione del costo unitario (per veicolo-chilometro) di produzione di un servizio 

di trasporto sull'arco preso in esame. Per quanto riguarda i termini che compaiono 

nella funzione obiettivo di Q, si suppone che la guerra non tragga beneficio alcuno 

dal transito dei flussi veicolari sulla rete di P, mentre il profitto di Q è stato posto 

pari al costo sostenuto da P cambiato di segno come descritto in precedenza. Ai 

fini di valutare le prestazioni dell'algoritmo, il medesimo problema, viste le sue 

contenute dimensioni, è stato risolto anche con un algoritmo esatto, cioè in grado di 

determinare l'ottimo globale. Il risultato dell'algoritmo proposto si discosta di solo 

lo 0,3% dal risultato ottenuto con una procedura di branch and bound. L'esempio 

applicativo ha consentito di comprendere le potenzialità dell'approccio proposto e 

nell'ottica di un suo utilizzo concreto ha fornito delle utili indicazioni su possibili 

sviluppi da intraprendere legati sia all'algoritmo, sia al modello sia al caso di studio. 

In conclusione, il lavoro presenta un modello per la definizione dell'assetto del 

sistema di trasporto delle merci, con la trattazione esplicita delle dinamiche deci

sionali interattoriali. In particolare si prendono in considerazione due soggetti, che 

operano scelte in sequenza gerarchica, uno dei quali agisce per minimizzare i costi to

tali del trasporto e l'altro cerca invece di massimizzare il proprio profitto che dipende 

dal volume di traffico lungo gli archi sotto il suo controllo. Si propone una formu

lazione di programmazione lineare bilivello, per risolvere un gioco infinito statico 

non cooperativo con insiemi di vincoli accoppiati. Sono descritte le condizioni di 

esistenza e alcune proprietà dei punti di equilibrio di Nash, dalle quali discende un 
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algoritmo di ricerca di un ottimo locale. Viene infine discussa un'applicazione del 

modello al caso del trasporto merci dalla Turchia all'Europa. Alcuni futuri sviluppi 

sono possibili. Essi portano alla progressiva eliminazione delle assunzioni sempli

ficative che sono state adottate allo stato attuale nella formulazione del modello. In 

particolare si tratta della configurazione della rete, della struttura e delle proprietà 

dell'algoritmo (oggi trova solamente un ottimo locale). Inoltre si intende procedere 

con il perfezionamento del caso di studio. 
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Chapter l 

The transport system 

Freight transportation is generally a very complex domain where several players, 

each with its own set of objectives, act and operate at various decisional levels. 

Since it has to adapt to rapidly changing politica!, social and economie conditions 

and trends, accurate and efficient methods and tools are required to assist and en

hance the analysis of planning and decision-making process (Crainic and Laporte, 

1997). There are different players in the field. The shippers who decide how much 

of each commodity to move from every origin to every destination and the means 

by which the goods will be moved. The carriers who respond to this transporta

tion demands and route freight over the actual transportation network under their 

control. Finally, the government defined as the set of international, national and 

local authorities involved in any way with freight transportation via regulation and 

the provision of transportation infrastructure (Harker an d Friesz, 1986). Because of 

the complexity of transportation systems, the different decisions and management 

policies affecting their components are generally classified in three main planning 

levels. First, strategie planning determines generai development policies and shape 

the operating strategies of the system. International shippers, consulting firms, 

transportation authorities are committed in this type of activity. Second, tactical 

planning aims to ensure, over a medium term horizon, an efficient and rational allo

cation of existing resources in order t o improve the performance of the w ho le system. 
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Finally, operational planning is performed by local management in a highly dynamic 

environment where the time factor plays an important role and detailed representa

tions of vehicles, facilities and activities are essential ( Crainic and La porte, 1997). 

This general framework holds at each planning level but has to be appropriately 

adapted to the transportation modality the players are considering for transporting 

goods. In particular, when focusing the attention on a road freight transportation 

system, the decisions of any player heavily rely on the status of the transport net

work h e normally operates o n. U nforeseen events may suddenly occur, producing 

relevant deviations of the actual behavior of the vehicle fleet from the expected one. 

Unexpected situations encompass either abnormal (or exceptional) events such as 

natural or man-made disasters, huge accidents, large-scale maintenance works, or 

normal (or regular) events su eh as usual variations in the traffi.c demand an d road 

capacity like congestion during peak period (see, e.g., Bell, 1999, and Iida, 1999). 

This is why an analysis of the network reliability should support the firm decision 

maker not only at the operationallevel, but at the tactical and strategie levels, as 

well. Connectivity reliability, i.e., the probability that there exists a t least one path 

without disruption or unacceptable delay to a given destination, and travel time (or 

performance) reliability, i.e., the probability that traffi.c can reach a given destina

tion within a stated t ime, are the principal issues in network reliability ( again, see 

Bell, 1999, and Iida, 1999). 

In this work, connectivity is granted, i.e., i t is supposed that i t is always possible 

to reach the desired destinations. Instead, attention is focused on performance reli

ability which is expressed in terms of costs to be afforded by the shipper (needless 

to say, such costs can also model delays). We consider the case that the demand 

for transportation aver the network is determined by only one shipper. However, h e 

cannot decide flow levels on arcs in a fully independent way due to the presence of a 

second agent controlling some links of the network and optimizing her own objective 

function. This framework may describe, as an example, the situation where restric

tions are imposed by some alpine country on the number of trucks allowed to cross i t 
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by road each year. On one side, the aim is to reduce air pollution. On the other side, 

the country makes a profit from each vehicle traversing i t due to e.g., toll collection 

or use of restaurants, hotels and petrol stations. A different application involving 

the presence of a second agent on the shipper's network is described in deeper detail 

in Chapter 6. In that case, the shipper is the International Transporters' Associ

ation (UND) of Turkey requiring to manage approximately 100.000 freight trucks 

per year in the European road network. Due to the Balkan war in the nineties, we 

consider the other player as an "adverse entity" (i. e., the war) introducing major 

limitations on the link capacities. 

1.1 The two players 

W e model this kind of situations as a game between two players P and Q acting on 

the same networ k G. Player P fixes the flows o n the arcs of G in su eh a way t ha t 

their divergence at some given nodes (sources and sinks) is equal to prescribed values. 

Such divergences may represent demand and availability levels for some commodity. 

On the other hand, player Q decides the values of the maximum capacities of some 

arcs of the network. As previously stated, both players are interested in the fact 

that the connectivity between the sources and the sinks in the network is respected, 

i. e., they both want that the goods can reach their destination. However, they 

have different objectives. Player P aims at minimizing the transportation costs, 

whereas player Q aims at maximizing her profit (or, in general, her utility) that is 

proportional t o the flow passing through the arcs un der her control. N o te t ha t, in 

general, the profit of player Q is not assumed to be equal to the cost of player P for 

the same are. Such game between players P and Q is modelled as a minimum cost 

flow problem for player P, where the are costs are given and the player Q decides 

the are capacities. The game may be generalized assuming that player Q controls 

both are costs and capacities. However, such a possibility is out of the scope of this 

work. 
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1.2 Main assumptions 

The problem we face is the assignment of a known and fixed demand of freight on 

a specific network aiming at minimizing the total transport cost on this network. 

Freight fiows on each are may be measured in terms of number of vehicles or amount 

of tons passing through i t in a given period of time. W e operate a t the strategie level 

where the time horizon under consideration is not restricted to a period compara

ble to the trip time. Hence we may neglect the individuai behavior of the carriers. 

In addition we assume, as usual in freight transportation, that the units of fiow 

do not have any autonomous decisional capability. As a consequence, the models 

we develop cannot be considered User Equilibrium or Network Loading Assignment 

Models fulfilling the condition expressed by the First Wardrop's Principle. Instead, 

we deal with and extend System Optimum Assignment Models leading to a solution 

which complies to the Second Wardrop's Principle (see, e.g., Cascetta, 1998). Fur

ther assumptions are also taken into account thus strictly defining the applicability 

environment of the present work. In the following subsections we introduce and 

justify them. 

1.2.1 Costs 

At the strategie level any shipper is generally not interested in the precise identifi

cation of the operational details each carrier or each vehicle has to examine when 

performing its journey. In fact, he considers only an aggregateci representation of 

the network goods have to pass through and makes the assignment of the total 

freight fiow to each are of the entire network just once each large period of time 

( e.g., month or year). Hence some phenomena, like for instance congestion effects, 

which might have short-time infiuence on road freight fiow can be neglected, espe

cially when observing shipments non restricted to an urban environment. In this 

context, the generalized costs associa t ed to each are may be correctly represented 

only considering their average values. Of course, if deviations from these mean val-
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ues are relevant also at the strategie level, a stochastic model has to be introduced. 

In this work we assume that the shipper's view fulfills the conditions allowing to use 

a deterministi c m od el w h ere the (aver age) generalized costs do not depend oh the 

flow. 

1.2.2 Q disconnects sources and sinks 

In a real transportation system it is highly unlikely that the shipper does not have 

any possibility but passing through the zone controlled by the adverse player Q. 

However, some exceptions may exist. As an example, consider the case of Finland 

whose two-thirds of overseas freight traffic goes by ship (source: The Ministry of 

Transport and Communications of Finland). All its vehicles transporting freight 

t o/ from Euro p e heavily relies o n sea transportation because of the high costs in 

terms of time and network unreliability that the alternative road or railways travels 

would require. A similar example involving a large amount of freight transport 

using links which are not fully controlled by the shipper occurs when large islands 

far apart from the continent, e.g., Sardinia, are considered. In both cases, sea an d 

weather conditions may affect the traffic. Hence under specific circumstances, the 

sea is the adverse entity a considerable amount of traffic must go through and whose 

are capacity may significantly vary, at least when observing short periods of time. 

The road freight traffic from/to Turkey to/from Western Europe faced to some 

extent similar problems when the war in the Balkans unexpectedly erupted in the 

early nineties. In fact, the capacity of some of the road links was going to be modified 

for a substantial long period of time and no viable road or railways alternatives 

existed. 

Similar issues also arise when the shipper acts on a network where the capacity of 

(part of) its links is fixed by administrative or environment al regulations like, e.g., 

the number of road permits for heavy goods vehicle traffic in different European 

countries. This is the perspective any international shipper operating across the 
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Alps has to face. In fact, he does not have any choice, but traversing countries where 

the maximum number of trips per year is imposed, either by severe restrictions (road 

permits) either by the capacity of alternative train links. As in the previous case, 

also in this context any variation of the road are capacities holds for a significant 

period of time since they comply either to national and international legislations 

either to bilatera! or multilateral agreements. 

This work explicitly addresses the situation where all the flow must go through 

the region controlled by the adverse entity. In practice, player Q arcs form a sub

network disconnecting shipper's sources and sinks. The whole shipper's network 

will be referred to as a disconnected network. Of course, when the adverse player 

too heavily affects shipper's operations, he may decide, if possible, to modify the 

network topology, e.g., by adding new links, or to divert part of his freight traffic 

to other transport modes. When this decision can be taken, the shipper has the 

possibility to choose among two or more parallel and alternatives different modes 

of transport connecting his origins with its destinations. As an example, consider 

the case in which the freight traffic between the same O /D pair can be made either 

by road or by railways or, as in the freight traffic case study which motivated this 

work (see Chapter 6), by sea. When the two modes are independent in the sense 

that freight leaves origin and arrives at the destination on the same transport mode 

and without any intermodal operation, the whole shipper's transport system may be 

split and each mode may be considered separately. In this context, our work focuses 

its attention on a single mode, namely on the relationships between the shipper and 

an adverse player acting on that specific shipper's monomodal network. A study of 

the conditions requiring these actions and an investigation of their consequences on 

the shipper's transport system at the strategie, tactical and operational levels are 

certainly very interesting an d actual issues. However, they go beyond the scope of 

this work and may be considered as further extensions of it. 
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1.2.3 Acyclic network 

The units of flow are not allowed to cycle, i.e., from any given node they cannot pass 

again through the same node. This assumption eventually rules out (see, e.g., Ahuja, 

Magnati and Orlin, 1993) the possibility that the units might go in both directions 

between any pair of consecutive nodes: only one direction among them is allowed. In 

a transportation context, this hypothesis may be considered unusual and unnatural 

because of the possibility to reach a given destination using different paths which 

might cross some specific links in apposite directions. However, this assumption is 

made for computational purposes, only. As we shall see in Chapter 5, the property 

identifying an equilibrium point for the games under study relies on the solution of a 

Minimum and Maximum Cost Flow Problem for player P and Q, respectively . It is 

well known (see, e.g., Ahuja, Magnati and Orlin, 1993) that solving a maximum cost 

flow problem with positive are costs is a NP-Hard problem if the graph is not acyclic. 

Thus by dropping this assumption computational difficulties would arise without 

adding any value or further information to the theoretical results we obtained. Of 

course, if the model of the transportation system under consideration necessarily 

requires the presence of directed cycles, the appropriate algorithms should be used 

and the theorems and properties in Chapter 5 accordingly modified. 

1.2.4 Sequential decisions 

A further important issue in this work concerns the instants of time the two players 

take their decisions. When assigning the flow on his network, the shipper either 

has to react to a previous move of the adverse player either he knows how she 

would react to his move and he tries to prevent her behavior aiming at minimizing 

the inconveniences he may suffer. In this framework, simultaneous actions are not 

considered because in our transportation environment they are meaningless. In fact, 

at the strategie level the shipper either prevents or reacts to a steady situation. The 

usual decision making process may be depicted as follows: first, the shipper tries to 
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prevent the hostile attitude of his adverse player making a fiow assignment on the 

network under concern. He assumes to be perfectly informed about her behavior. If, 

for any reason, the evil entity changes her mind thus affecting the actual assignment, 

the shipper tries to do his best to react to this new situation. In practice, we assume 

that the system is in a steady state which lasts significantly more than the decision 

making process of both players generating it. 

1.3 Case study 

The models developed in this work partially motivate considering some specific 

aspect of road freight traffi.c among Turkey and Western Europe. We briefiy sketch 

it to further clarify the context we are dealing with. In Chapter 6, some further 

details on this system are introduced. 

Every year approximately 100.000 trucks belonging to the International Trans

porters' Association (UND) of Tur key leave the country an d spread through the 

whole Europe. They reach their destinations by road through the Balkans, Cen

trai and Western or Northern Europe. In this context, UND may be considered as 

player P. I t is o n his concern to determine the traffic fiow to be assigned to each leg 

of the network connecting the origin to the destinations. The minimization of the 

overall costs to be afforded is his main goal. In the early nineties, the sudden war 

in the former Yugoslavia caused major disruptions in the service. Then, the shipper 

had to cope with an "adverse entity" able to modify the available capacity on some 

specific links. The region involved in the confiict may be represented as a connected 

subnetwork disconnecting the origin and the destinations of the road transportation 

network since alternative road routes are not affordable. In our example, we assume 

that the shipper performs a worst-case analysis at the strategie level assuming that 

player Q wishes to maximize the costs he has to afford when going through the 

region under her control. 
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1.4 Structure of the work 

This work is organized as follows. In the next Chapter 2, to better understand 

and properly define the models later developed the necessary background on Game 

Theory is introduced in Section 2.1 and the characterization of the games we face 

is precisely stated in Section 2.2. Chapter 3 presents a literature review on the 

three relevant approaches the model developed in this work is based upon. After 

a brief overview o n the main freight transportation models in Section 3.1, models 

considering some particular games over a network are presented in Section 3.2, 

and finally in Section 3.3 a few papers dealing with bilevel linear programming 

applications o n ( freight) transportation are mentioned. The games un der study 

are mathematically formalized in the first section of Chapter 4. In addition, a 

simple explanatory network is also introduced as an example to help the reader in 

understanding the main concepts and definitions. In Section 4.2, the representation 

of both games as bilevellinear programming problems (BLPPs) is presented together 

with some undesired situations to be avoided in Section 4.3. Hence in Section 4.4 we 

provide the basic definitions and properties for a BLPP in the generai case and in 

Section 4.5 we extend these concepts to the games under consideration. In the next 

Chapter, Section 5.1 presents the definition of Nash equilibrium for such games and 

proves that the optimal solutions for a BLPP are also Nash equilibria. Following 

some theoretical background in Section 5.2, in Section 5.3 relationships of a Nash 

equilibrium point with the Minimum Cost Flow Problem are investigated. Relying 

on these results, a heuristic algorithm identifying an upper bound for the optimal 

solution of the BLPP is presented in Section 5.4. In Chapter 6, the freight traffi.c 

system motivating this work is presented in more detail. Relying on some of its 

features, a simple network is used as a test for the heuristic algorithm previously 

developed and comparisons with the results obtained from an exact procedure are 

performed. In Chapter 7 further possible research issues are presented and in the 

last Chapter some conclusions are eventually drawn. 
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Chapter 2 

Network game 

As described in the previous Section 1.1, the two entities acting on the same net

work mutually infiuence each other, or, according to some widespread terminology, 

play a game. To better understand and properly define the models developed in 

the following sections and chapters, in Section 2.1 we introduce the necessary back

ground o n Game Theory relying o n the two well-known reference books ( Osborne 

and Rubinstein, 1997) and (Ba§ar and Olsder, 1999). In the following Section 2.2, 

the characterization of the games we face is precisely stated. 

2.1 Game theory 

Definition l A game may be defined as a description of strategie interaction that 

include the constraints on the actions that the players can take. The individua[ 

making a decision may also be referred to as a player or a person of the game. 

Games are distinguished in different ways: 

• Noncooperative and Cooperative Games: A game is called Noncoopera

tive if each person involved pursues his own interests which are partly confiict

ing with others'. When the players share common interests, they cooperate in 

identifying a possible solution. 
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• Strategie (or normal) and Extensive Games: A strategie game is a model 

of a situation in which each player chooses his plan of action once and for all, 

and all players' decisions are made simultaneously (that is, when choosing a 

plan of action each player is not informed of the plan of action chosen by any 

other player). By contrast, the model of a extensive game specifies the possible 

orders of events; each player can consider his plan of action not only at the 

beginning of the game but also whenever he has to make a decision. 

• Games with Perfect and lmperfect lnformation: In the former case, the 

participants are fully informed about each others' moves, while in the latter 

case the may be imperfectly informed. 

• Finite and Infinite Games: In the former case, all the players have at their 

disposal only a finite number of alternative to choose from, while in the latter 

case at least one player has infinitely many moves. 

• Symmetrical and Hierarchical Games: In the former case, no single player 

dominates the decision process, while in the latter case one of the players has 

the ability to enforce his strategy on the other player(s). For such decision 

problems, a hierarchical equilibrium solution concept is introduced. 

In symmetrical games, an equilibrium solution of a game is reached when no one 

of the players can improve his outcome without degrading the performance of the 

other players. In particular, when the solution of a noncooperative game is such that 

one player cannot improve his outcome by altering his decision unilaterally, this is a 

N ash equilibrium solution. However, this solution in generai is not Pareto-optimal. 

In fact, if the players cooperate they could mutually benefit of a better equilibrium 

solution. 

An interesting relationship between the N ash equilibrium concept and the trans

portation field is given by the property stating that the N ash equilibrium converges 

to the Wardrop equilibrium when the number of users becomes large. In particular, 
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Nash equilibrium is strictly related with User Equilibrium expressed by the First 

Wardrop's Principle which is often used in the context of road traffic. It has been 

shown in (Haurie and Marcotte, 1985) that the Wardrop Equilibrium is the unique 

limit of any sequence of Nash equilibria obtained for a sequence of games in which 

the number of users is finite and tends to infinity, even in those games where the 

Nash equilibrium is not unique (Altman, Ba§ar and Srikant, 1999). 

2.2 Characteristics of the game 

In this section we characterized the game we deal with. We first show that the 

presence of flow balancing constraints limits the action space of both players. In 

the following we precisely define the type of game according to the classification 

presented in Section 2.1. Finally, we introduce two different possible Stackelberg 

games the two actors can play in the framework we established. 

2.2.1 A two-player constrained game 

In this work we face a particular game because the two players are not allowed to 

act independently one to other, i.e., the constraints of each player may depend on 

the strategy of the other player (Rosen, 1965). In fact, both players have also to 

take into account the topology and the characteristics of the network they act on. 

Figure 2.1 may help to understand the context. The shipper (player P) has to ship 

a given amount of freight from node A to nodes H and I aiming at minimizing the 

cost of the transport. U nfortunately, h e has t o co p e with an adverse entity (player 

Q) who is entitled to fix the capacity of the dashed line arcs aiming at maximizing 

her utility due to the passage of the units of flow through the region she controls. 

As it is explained in Section 1.2.2, we assume that all flow from the origins to 

the destinations must go through the Q region. In this case, it is easy to prove 

that player Q action is no longer a decision on are capacities but reduces to a flow 

assignment on her region. Since connectivity is granted, the same amount of flow 
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Figure 2.1: Players P and Q acting on the same network 

entering each intermediate node (i.e., B, C, D, E, F and G) also leaves it, i.e., flow 

balancing constraints hold. For the arcs entering and leaving each of these nodes do 

not belong to the same actor ( we will call them frontier node, see Section 4. 2), the 

two players cannot freely assign the flows on the arcs they control: only assignments 

fulfilling flow balancing constraints o n each intermedia te (an d thus, frontier) n ode 

are allowed. 

By exploiting this characteristic, we identify some properties of the game solu

tions which allow us to define a heuristic algorithm restricting its (local) search on 

the set of the Nash equilibrium points, as it is explained in Section 4.5 and in the 

following Chapter 5. 

2.2.2 Game specification 

Since players P and Q have conflicting objectives, in this work our attention is only 

focused on noncooperative games. In addition, we also assume that each player 
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has perfect information about the other player behavior. Furthermore, bot h players 

have to choose a feasible flow in the network under their own control satisfying flow 

balancing and capacity constraints, then they have infinitely many alternatives to 

consider. Due to the presence of flow balancing constraints, the game un der study 

may be referred to as a static noncooperative infinite game with coupled constraint 

sets (B~ar and Olsder, 1999). 

2.2.3 Stackelberg games 

Unfortunately, no clear interpretations of a Nash or a saddle-point equilibrium of 

the strategie form of these games stili exist (B~ar and Olsder, 1999). For this and 

other (see Section 1.2.4) reasons, the simultaneous game is explicitly not addressed 

in this p a per. Conversely, we face the situation wherein o ne of the players has the 

ability to enforce his/her decision on the other player which reacts independently and 

rationally (Osborne and Rubinstein, 1997). Hence, only the hierarchical frameworks 

(i. e., player P plays first or player Q plays first) are considered. As a consequence, we 

deal with games in their extensive form. In particular, games in which a t least o ne 

player is allowed to to act more than once and with possibly different information 

sets at each level of play, are known as multi-act games. In fact, since the shipper 

takes his strategie decisions aiming to prevent or to react to the other actor behavior, 

two different two-player infinite multi-act games can be considered: 

Game l Player P plays first. If P fixes the fiows all over the network, then no 

decision is lejt t o player Q. In fa et, Q may only adjust the are capacities according 

t o the fiows imposed by P. Such a trivial possibility is no t considered any more in the 

rest of the paper. A more realistic situation is that P plays first, initially deciding 

only on the fiows over the arcs not controlled by Q and possibly leaving unbalanced 

divergences in some nodes. Then, Q fixes the capacities of the arcs under her control 

with the only constraints that it must be possible to balance the fiows lejt unbalanced. 

Finally, P plays again deciding on the fiows in the arcs controlled by Q. 
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Game 2 Player Q plays first. This situation occurs, as an example, when a local 

traffic authority imposes the maximum fiow of trucks that the roads un der her contro l 

may bear. Given the capacities fixed by Q, then player P may decide his fiows. 

Game l is a three-stage decisi o n process. However, in Section 4. 2 we prove that 

the hypothesis about connectivity allows to remove the third level and leads to a 

two-level program. Differently, Game 2 is clearly already a two-stage process. Hence 

in this work we focus the attention on bilevel games only. In particular, we deal 

with bilevel noncooperative games in which one player ( called the leader) declares 

his strategy first and enforces i t on the other players ( called the followers) w ho 

react (rationally) to the leader's decision. Such games are referred to as Stackelberg 

games. 

In Section 4.2, we show that the payoff functions and all the constraints in both 

Stackelberg games may be expressed in a linear form. Hence these games will be 

formalized as bilevellinear programming problems (see, e.g, Bard, 1998). 
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Chapter 3 

Literature review 

The modelling of the two games under investigation and their characterization as 

a bilevel linear programming problems are mainly based upon three different re

search lines. First, the players understand the freight transportation system as a 

system where the actors involved do not act simultaneously and they explicitly take 

into account the sequential nature of the interactions among them. Second, they 

play a (hierarchical) game over a fiow network which causes severe limitations and 

constraints t o their action sets. Moreover, o ne of the two players cannot be consid

ered as a "rational" person maximizing her utility. Instead, she acts as an adverse 

player seeking to maximize inconveniences to her opposi te player. Finally, the games 

exhibit linear characteristics and can be solved using bilevellinear programming. 

All these issues have already been discussed in the scientific literature, even 

though in different separate contexts. The merging of three mentioned approaches 

in only one single framework is a major contribution of our modelling perspective. 

Furthermore, bilevel programming is rich of theoretical results and numerical algo

rithms, but is scare in actual applications. From this point of view, the present 

work might be considered as an interesting addition to the field. In this chapter, 

a broad overview of the main available results on freight models and on the other 

two research lines with specific focus on their application to freight transportation 

is provided. 
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3.1 Freight transportation models 

In the past and recent years, passengers mobility, with particular emphasis on the 

development of modal choice and assignment models, has certainly been more widely 

investigated than freight transportation. This discrepancy might have been caused, 

on one side, by the greater complexity of the freight mobility system with respect to 

the passengers one. On the other side, the collection of reliable and detailed data is 

a highly difficult task (Camus et al., 1998). Nevertheless, "freight transportation is 

one of today's most important activities, not only as measured by the yardstick of 

its own share of a nation's gross national product (GNP), but also by the increasing 

infiuence that transportation and distribution of goods have on the performance 

of virtually all other economie sectors" ( Crainic an d La porte, 1997). To suitably 

face the new theoretical challenges and effectively meet the operator requirements, 

in the recent years more attention is paid to the freight transportation system by 

the academic community and practitioners. For instance, new International Jour

nals ( e.g., Transportation Research, P art E: Logistics), Special Issues of scientific 

Journals, Workshops ( e.g., Odysseus: Logistics and Freight Transportation, to be 

held triennially) an d Conference streams completely devoted on logistics an d freight 

transportation problems are increasing every year. This interest together with the 

availability of more performing computers leads to the development of more power

ful algorithms thus providing more realistic models both in terms of complexity and 

size. In this section, we briefiy describe the principal methodological approaches for 

modelling freight transportation systems that have been useful in developing this 

work. 

3.1.1 Equilibrium models 

They represent the modal choice and assignment of a freight transportation system 

in an aggregate way: interactions among the different decision makers are not explic

itly taken into account. lnstead, fiow ( tons or trucks) on the multimodal network are 
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represented considering the demand expressed in terms of the O /D matrices. The 

representation of the infrastructural network is performed with particular care: the 

aim is to differentiate by means of appropriate cost functions either the actual net

work arcs from those representing intermodal exchanges, either the arcs related to 

the different nodes of transport. A seminai model following the described approach is 

the Harvard- Brookings model (Kresge and Roberts, 1971). Later contributions are 

the Freight Network Equilibrium Model (Harker and Friesz, 1986) which introduces 

the congestion phenomenon and the Multimode Multiproduct Network Assignment 

Model ( Guélat, Florian and Crainic, 1990) which allows to obtain a description of 

the multimodal transport system able to support decisions at the strategie level. 

These network models provide a clear description of the system but, as a drawback, 

they lack in accuracy with respect to the decisional process occurring in the system. 

In addition, they do not consider some typical aspects of a freight transportation 

system as the back-hauling phenomenon and the limitations on the availability of 

vehicles. However, they provi de an analytical approach for representing the trans

portation costs of the network. 

3.1.2 Sequential models 

Due to the widespread fragmentation in both the demand and supply sides, different 

actors are generally involved in the freight transportation system. The sequential 

models explicitly describe the decision making process for both sides. Unlike pas

sengers mobility, these decisions have usually more infiuence on the actual behavior 

of a freight transportation system rather than the determination of the minimum 

generalized transportation cost only. The operators involved may be usually clas

sified in four families: Producers and Consumers (transportation demand), Public 

Authorities (Local entities, Port Authorities, Governments), Shippers and Carriers. 

Each of them deals with problems which are mutually interconnected a t the different 

hierarchical levels, i.e., a t the strategie, tactical, and operationallevel. As a rough 
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approximation, the main features of the decision making process may be adequately 

represented by considering the role of shippers and carriers only. In fact, produc

ers, consumers and Public Authorities affect the system in a less dynamic way and 

their influences may be taken into account by means of constraints imposed on the 

shippers and the carriers (Camus et al., 1998). The transportation demand usually 

can be adequately expressed in terms of O /D matrices, whereas public authorities' 

activity mainly affects the design of the infrastructure supply and/ or the link cost 

functions of the multimodal network. On the other hand, shippers and carriers may 

act, at different levels, on several decision making variables, and influence the final 

structure of the system. Relationships among all the actors involved in the transport 

of goods are conceptually described, e.g., in the framework proposed by Harker an d 

Friesz, 1986. However, the other existing models generally take into account only 

the decision making process between shippers and carriers. 

Among the most interesting models, the approach proposed by Friesz, Gottfried 

and Morlok (1986) assumes a merely sequential structure to describe the hierarchical 

decision process and proposes a nonlinear optimization model to represent it. At 

the beginning, shippers, on the basis of aggregate information about the network 

and the transport demand in terms of production and needs, decide origins and 

destinations of the movements, transport modes and, if any, nodes of intermodal 

exchange aiming at minimizing their own total generalized cost. In the following, 

a correspondence between the nodes of the aggregate (shipper's) and the detailed 

( carrier's) networks is established. Then each carrier receives from the shippers 

fixed amounts of demand and optimizes its own transport subsystem in order to 

minimize the generalized cost o n this su bnetwork. In particular, carriers may decide 

on the path to be followed on the detailed network and on other operative issues as, 

e.g., fleet and crew rostering and scheduling. A t the end of this two-stage decision 

process, are and path flows and costs are obtained. Criticism is raised to this model 

because of the lack of interaction between the two hierarchical levels, namely, by no 

means carriers' choices are allowed to influence shippers' decisions. In particular, 
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shippers are not able to evaluate the actual cost in the different arcs because it 

depends o n the load alloca t ed by the lower level decisi o n maker. Thus this is no t 

an equilibrium model allowing shippers and carriers to take simultaneous decisions. 

3.1.3 Mathematical programming models 

Mathematical programming models and algorithms have proved highly suitable for 

the solution of road freight transportation problems at the strategie, tactical and 

operational levels. They use linear, integer or mixed integer programming method

ologies both in a static and dynamic context on a deterministic or stochastic net

work. When the exact solution can not be obtained in due time because of the 

computational N P-hardness of the problems, approximate or heuristic algorithms 

are also developed and implemented. Restricting the attention to the strategie level 

only, goods producing firms are mainly concerned on the distribution network de

sign problem whereas transportation or logistics firms focus their attention on the 

transportation network design problem (Speranza, 1999). In the former case, the 

decision maker has to decide on the node characteristics (i.e., plant facilities, centrai 

or regional warehouses, intersshipment points), on their amount, location and capac

ity, on the distribution routes, and on the transportation modality for each possible 

link. Cost minimization while satisfying a given level of service for customers is his 

main objective. In the latter case, the aim is to choose links in a network, along 

with capacities, eventually, i~ order to enable goods to flow between origin and des

tination at the lowest possible system cost, i.e., the total fixed cost of selecting the 

links plus the total variables cost of using the network (Crainic and Laporte, 1997). 

A wide range of different problems on these topics exists according to the con

straints the system under study is subject to and the objectives of the decision 

maker. More complex challenges arise when integrating the strategie and the tacti

callevels, e.g., simultaneously considering the just above described aspects with the 

collection and/ or distribution routing and scheduling issues. 
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3.2 Network Game models 

When a network with non-cooperating agents acting on it is considered, the game 

theoretic approach may be relevant. Indeed, the search for Nash or Stackelberg equi

libria has been employed in, e.g., fiow control, routing and virtual-path bandwidth 

allocation in modern networking (Libman and Orda, 1999). In this context, models 

dealing with very simple topologies (i.e., a common source and a common desti

nation n ode interconnected by a number of parallel links) an d considering either a 

single follower and a multi follower Stackelberg game have been presented (Korilis, 

Lazar and Orda, 1997). They propose a method for architecting noncooperative 

equilibria in the run time phase, i.e., during the actual operation of the network. 

This approach is based in the observation that, apart from the fiow generateci by the 

self-optimizing users, typically, there is also some network fiow that is controlled by 

a centrai entity, also called "the manager". As an example, we might consider the 

traffic generateci by signalling and/ or control mechanisms, as well ad traffic of users 

that belong to virtual network. The manager attempts to optimize the system per

formance, through the control of its portion of fiow. This framework is generally not 

suitable for transportation networks because in this latter case the user controls just 

an infinitesimally small portion ofthe network fiow (i.e., a car on the road), whereas 

we are concerned with users controlling non negligible portions of fiow (Orda, Rom 

and Shimkin, 1993). However, it provides complementary aspects with the freight 

transportation network we propose in this work. On one side, it considers a simpler 

network topology (i. e., only parallel arcs) than we do. On the other side, i t assumes 

that the leader and follower may control portions of the fiow in a given are, whereas 

we always imagine t ha t in each are all the fiow is fully controlled by only o ne player. 

As a further research, it would be interesting to investigate more thoroughly the 

links between these two approaches. 

The game theoretic approach is explicitly used in a transport network by Bell 

(1999) and Bell (2000). In these papers, the author envisages a two-player, non-
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cooperative, zero sum game between a network user seeking to a path to minimize the 

expected trip cost on one hand and an "an evil entity" imposing link costs on the user 

so as to maximize the expected trip cost on the other. The user guesses what link 

costs will be imposed and the evil entity guesses which path will be chosen. At the 

N ash mixed strategy equilibrium, the user is unable to reduce the expected trip cost 

by changing its path choice probabilities while the evil entity is unable to increase the 

expected trip cost by changing the scenario probabilities, without cooperating. At 

the equilibrium, this game offers a useful measure of network reliability defined as the 

expected trip costs that are acceptable even when users are extremely pessimistic 

about the state of the network. These papers differ from our approach because 

they considera simultaneous game with mixed strategies. In addition, the network 

user seeks to solve a shortest path problem, whereas we face a minimum cost fiow 

problem. However, they introduce the concept of an "evil entity" operating on 

a network to be dealt with by the user. This provides the theoretical framework 

for performing a worst-case analysis as a basis for a cautious approach to network 

design. 

Even though the game theoretic approach is not explicitly addressed, another 

similar network game to be considered has been introduced by Lozovanu and Trubin, 

1994. They present a different two-player game over a network. In their model, a 

partition of the network nodes in two classes is considered. The player controlling 

the first ( second) class chooses the arcs in or der t o maximize ( minimize) the sum 

of their costs. The game consists of a sequence of moves that incrementally build 

the solution path. Each player moves (i.e., includes new arcs in the path under 

construction) if an d only if the are t o be chosen t o reach destination belongs t o 

his/her own class. It follows that at each node it is possible to identify the maximin 

or the minimax path from a given origin, according to the class the node belongs to. 

In contrast to this incrementa! approach, in our system each player assigns fiows at 

a given time or, respectively, capacities to all the arcs under his/her own control. 

Note that the game is not necessarily simultaneous in the sense that the two players 
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may or may not make their move at the same time. Each actor decides at the same 

time for all his/her arcs, but each move is taken, in generai, at a different time. 

3.3 Bilevel models 

In generai, bilevel programming problems are difficult to sol ve because of their inher

ent non-convexity and non-differentiability (Florian and Chen, 1995). Due to their 

NP-hard nature, practitioners are committed in developing new exact or heuris

tic algorithms ab le to identify a ( acceptable) solution in not too long computation 

time. In spite of the substantial development of research in this area, there is stili 

scope for improvement. Bard (1998) provides a recent and updated summary of the 

theoretical results and introduces the most widespread solution techniques for the 

linear, non linear and generai case, respectively. This book is used as a reference 

throughout this work whenever bilevel programming issues are concerned. 

Among the different applications, some transport studies have been performed 

using bilevel models. In particular, they mainly focus on passengers' mobility with 

emphasis on the road transport sector. The early papers deal with highway network 

system design (see, e.g., Ben-Ayed, Boyce and Blair, 1988) also considering conges

tion effects (Marcotte, 1986). Traffic control models, like, e.g., traffic signal setting, 

optimal road capacity improvement, estimation of the origin-destination matrices 

from traffic counts, ramp metering in freeway-arterial corridor and optimization of 

road tolls have also been developed using bilevel programming technique (Yang and 

BeH, 2001). Recent advances in this field rely on non-traditional formulations of 

static and dynamic equilibrium network design and on the development of algo

rithms for urban traffic optimization models (again, Yang and BeH, 2001). 

Even though bilevel programming enables the representation of competition be

tween players, hardly ever freight transportation modelling relies on this technique. 

A relevant exception to this trend is the paper written by Brotcorne et al., 2000. 

They develop a bilevel programming formulation for freight transportation focusing 
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the attention to a tariff-setting problem involving two decision makers acting non

cooperatively and in a sequential way. The leader consists in one among a group 

of competing carriers and the follower is a shipper. At the upper level, a given 

carrier maximizes its revenues by setting optimal tariff on the subset of arcs under 

its control. On one side, the reaction from its competitors is neglected, on the other 

side, the reaction of the shipper company to its price schedule is explicitly taken 

into account. A shipper company (the follower) ships a prescribed amount of goods 

from origins to its customers at minimum cast. The lower level problem provides 

the fiow repartition solving a standard transshipment problem where the tariffs are 

added to the initial are costs. Supply at the origin nodes and demand from the 

customers are both assumed to be known and fixed. Hence the shipper minimizes 

its transportation costs, given the tariff schedule set by the leader. 
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Chapter 4 

Mathematical formulation 

Games l an d 2 are mathematically formalized in the first sections of this chapter. 

In addition, a simple explanatory network is also introduced as an example to help 

the reader in understanding the main concepts and definitions. In Section 4.2, we 

claim that both games may be represented as bilevellinear programming problems 

(BLPPs). Hence in Section 4.4 we provide the basic definitions and properties for a 

BLPP in the generai case and in Section 4.5 we extend these concepts to the games 

under consideration. 

4.1 N otation an d definitions 

Given a digraph G = (N, A), where N is the set of nodes and A is the set of arcs, 

each node i E N is either a source node or a sink node or simply a transshipment 

node. A fiow divergence vector b is given, with bi > O if i is a source node, bi < O 

if i is a sink node, and bi = O if i is a transshipment node. The arcset A in G 

is partitioned in two subsets, A = AP U AQ, with BP and BQ the corresponding 

incidence matrices. The cardinalities of sets AP and AQ are defined as p and q, 

respectively. Each are a E A has an upper bound ila on the maximum fiow that can 

pass through it. All the lower bounds are assumed equal to zero. 

Player P decides the values of the fiows through the arcs in AP necessary to 

36 



satisfy the demand expressed by the divergence vector b. Player Q decides the 

values of the capacities of the arcs in AQ, i. e., she may reduce the upper bound ile of 

any are e down to a lower value Ua. Define x E RP the vector of the flows of the arcs 

in AP and y E Rq the vector of the flows of the arcs in AQ. The two players have, 

possibly different, objectives cpP =cPP x+ cPQY and cpQ = cQP x+ cQQy, respectively. 

We assume that all the components of cpP and cpQ are constant and non negative. 

A simple example (see Fig. 4.1) may help to better understand the network and 

the notation just introduced. 

1 ; 3 
----

1 ; o ' l 

' l 
' l > 

10. 51 ' 10. 7 
' ' ' 
l ' 1 ; o l 

1 ; o ----
2;4 

Figure 4.1: Players P and Q network 

Player P controls the solid line arcs and player Q the dashed line ones. Thus 

the arcset A= AP U AQ is composed of 

AP = {AB,AC,DF,EF} and AQ = {BD,BE,CD,CE}. 

In Tab. 4.1 the costs and the capacities associateci to each are a E A are shown: 
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a cPP CPQ CQP CQQ Ua 

AB l - o - l 

AC l - o - l 

BD - l - 3 l 

BE - lO - 5 l 

CD - lO - 7 l 

CE - 2 - 4 l 

DF l - o - 2 

EF l - o - 2 

Table 4.1: Are eosts and eapaeities 

We finally assume that 2 units of flow leave souree A and have to reaeh destina

tion F, i.e., bA= 2,bB =be= bn =bE= O,bp = -2. 

4.2 Game formulations 

Aeeording to the above notation, Game l claims that given two players, P and Q, 

and a network G = (N, A), the first player P decides the values of the flows x, then 

player Q deeides the values of the eapaeities uQ, finally player P deeides the values of 

the flows y. We may observe that both the payoff funetions and all the eonstraints, 

i.e., flow balaneing, eapaeity an d nonnegative eonstraints, are linear. Henee this is 

a linear three-stage game whieh may be formalized as follows: 

minc/JP = 
x 

cpp x+ CPQY (la) 

BPx = bP (l b) 

subjeet to max c/JQ = CQP X+ CQQY 
UQ 

(le) 

mincPQY 
y 

(ld) 

BQy = bQ (le) 
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BPQ x + BQP y = o 

o~ x~ ilp 

0 ~ y ~ uQ ~ ilQ 

(lf) 

(lg) 

(lh) 

where (la) is the objective of player P, (le) is the objective of player Q, (ld) is the 

second move of player P and conditions (lb), (le) and (lf) are the flow balancing 

constraints for nodes in which only arcs in AP are incident, nodes in which only 

arcs in AQ are incident, and nodes in which arcs both in AP and AQ are incident, 

respectively. In the following, these last nodes are referred to as frontier nodes. 

Denote N C N the set of the frontier nodes. As an example, referring again to Fig. 

4.1, N = { B, C, D, E}. W e also define BPQ as the incidence matrix for frontier no d es 

corresponding to arcs in AP and BQP as the incidence matrix for the frontier nodes 

corresponding to arcs in A Q. Note t ha t t h ere is no loss of generality in assuming 

that no sink or source can be a frontier node. 

Theorem l When network GQ = (N, AQ) disconnects network GP = (N, AP), 

letting player Q choose the capacities uQ corresponds to make her define the fiows 

y over the subnetwork GQ = (N, AQ), provided that the fiow balancing constraints 

with fiows x are met. 

Proof: Each are in GQ has a maximum capacity il Q. Player Q would lower these 

capacities to let pass as much flow as possible in the more profitable arcs and as less 

flow as possible in the less profitable arcs. In this way, she fixes the exact amount of 

flow going through each are, i.e., she assigns the flow on her network. Hence player 

P does not have any further room to decides on the flows y, i.e., equation (ld) may 

be removed. On the contrary, this equation stili holds when some flow can reach 

destination by overcoming GQ. In this case, once player Q has fixed the capaciti es 

on her arcs, player P is allowed to assign to GQ less flow than the available capacity 

by sending some flow over the arcs not passing through i t. D 
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Under the above hypotheses, Game l simplifies: first P decides flows x, then 

Q decides flows y. Model (l) describing Game l may be restated as the following 

bilevel linear programming problem, or linear Stackelberg game (see, e.g., Bard, 

1998), since player P cannot do anything different from giving up the control of 

flows y to player Q: 

min<J>P = cPP x+ cPQY 
x 

subject to max <PQ = cQP x+ cQQY 
y 

BPx = bP 

BQy = bQ 

BPQX + BQPY =o 

o~ x~ uP 

0 ~ y ~ uQ. 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(2f) 

(2g) 

Similarly, Game 2 where, given two players P and Q, and a network G =(N, A), 

player Q decides first, may be formally stated by means of BLPP (2) with the only 

difference that the role of the two objective functions (2a) and (2b) are exchanged. 

By means of the example previously introduced in Fig. 4.1, we present the three 

different possibilities that the shipper (i.e., player P) may face when deciding to 

move two units of flow from source A to destination F and solving BLPP (2). 

• Player P plays first (Game l). In this case, player P has only three choices 

for allocating the two units of flow (see Tab. 4.2). Player Q reacts to each of 

them in such a way to maximize her profit. Observe that when P considers 

the second alternative, Q may react in two ways: YBD = l, YBE = O, YcD = 

O, YcE = l yielding <PQ = 7 or YBD = O, YBE = l, YcD = l, YcE = O yielding 

<PQ = 12. Obviously, she will choose the latter one. Since this behavior is 

known by player P, he will finally choose the third alternative that leads to 

a minimization of his costs, i.e., XAB = l, XAc = l, XDF = 2, YEF = O and 

<PP = 15 (Fig. 4.2a). 
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Player P choices Player Q consequent choice 

AB AC DF EF BD BE CD CE maxcpQ cpp 

l l o 2 o l o l 11 16 

l l l l o l l o 12 24 

l l 2 o l o l o 8 15 

Table 4. 2: Player P plays first 

• Player Q plays first (Game 2). In this case, player Q has four different 

possible moves and player P may react to each of them in only a single way 

(see, Tab. 4.3). It is easy to show that the third alternative is the optimal 

solution in this game (Fig. 4. 2b) an d cpP = 24. 

Player Q choices Player P consequent choice 

BD BE CD CE AB AC DF EF mincpP cpQ 

l o l o l l 2 o 15 8 

l o o l l l l l 7 7 

o l l o l l l l 24 12 

o l o l l l o 2 16 11 

Table 4.3: Player Q plays first 

• Player Q does not exist. This situation is presented only to compare the 

two previous games with the most favorable case the shipper may afford: he 

fully controls all the arcs of the graph. Thus he has simply to sol ve a Minimum 

Flow Cast Problem over the entire network (Fig. 4.2c). The result turns out 

to be cpP = 7 which is the smallest value among the three possible alternatives, 

as it should have been expected. 
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a b 

c 

Figure 4.2: The three alternatives the shipper may face 

However, in the remainder of this work we always consider Game l under the 

hypotheses defining BLPP (2). 

Comparison with another network game 

To further clarify the games under study, we compare player P's results when he 

moves first with the assignment obtained when the players moves in accordance 

with the game proposed by Lozovanu and Trubin (1994) which has already been 

introduced in Section 3.2. Also in this latter case, player P aims at minimizing the 

cost of the transport and player Q aims at maximizing her utility. Conversely to 

our approach, each player do es not act o n all the arcs un der his /her control a t the 

same time. Starting from the origin, player P assigns the flow on the first part of his 

network, then he waits for player Q's choice on her subgraph and, finally, he makes 
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the assignment on his remaining arcs thus reaching destination. Always relying on 

the simple network introduced in Fig. 4.1, it is easy to show that the outcome of 

this game is depicted in Fig. 4.2b. Even though he moves first, player P gets a 

worse payoff (than the result shown in Fig. 4.2a representing Game l) because he 

is not able to completely prevent the other player's reaction as he normally does in 

Game l. 

4.3 Undesired situations 

Undesired situations may occur and have to be avoided. 

l. Player Q does not have to force circulations in the flow. In fact, player P 

would never play against player Q if he knew that she could force his vehicles 

to indefinitely loop in the region under her control. To prevent this situation, i t 

is assumed that either GQ is cycle-free or that in (2) the appropriate constraints 

preventing flow circulation, possibly exponential in number, are added. In this 

latter case, the algorithm we later present may stili be used, but the solution 

of the maximum cost flow problem in one of its steps would become a NP-hard 

problem. 

2. When multiple optima for player Q leading to different values of cPQY exist, 

player P may not achieve his optimal solution even though the feasible region of 

BLPP (2) is not empty. To overcome this problem, observe that once player Q 

has reached optimality, she is no longer in competition with player P. Hence, 

we assume a benevolent (cooperative) attitude of player Q with respect to 

player P. Then, the two players may collaborate and player P may encourage 

player Q to choose a desirable solution for him. This framework allows player 

P to always identify an optimal solution, as described in Bialas and Karwan, 

1984. As an example, consider Fig. 4.3 which is a slight modification of 

the network introduced in Fig. 4.1. In this network, player Q always earns 
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Figure 4.3: Player Q has multiple optima 

4. Since she would choose the most favorable alternative t o player P, i.e., 

YBD = l, YBE = O, YcD = O, YcE = l, he would play XAB = l, XAc = l, XDF = 

l, XEF = l leading to cpP = 7. 

4.4 Bilevel linear programming 

In the previous section, we claim that the game under investigation is formalized as 

a bilevellinear programming problem (BLPP). To solve it, some basic background 

has to be introduced. Relying on (Bard, 1998), i t is first given for the generai case. 

Then its adaptation to BLPP (2) is provided in Section 4.5. 

A generai BLPP for continuous variable can be written as follows: 

minF(x, y) 
x EX 

subject to A1x + B1y ~ b1 

min f(x, y) = c2x + d2y 
yEY 

subject to A2x + B2y ~ b2 

where x E X C Rn, y E Y C Rm, F : X x Y --+ R, and f : X x Y --+ R. 

44 



In addition, cl, C2 E Rn, dl, d2 E Rm, bl E RP, b2 E Rq, Al E Rpxn, Bl E Rpxm, 

A2 E Rqxn, B2 E Rqxm. Once the leader selects an x, the first term in the follower's 

objective function becomes a constant and can be removed from the problem. Hence 

y can be viewed as a function of x, i.e., y = y(x). 

Fora BLPP the following definitions are introduced: 

l. Constraint region of the BLPP: 

2. Feasible set for the follower for each fixed x E X: 

3. Projection of S onta the leader's decision space: 

4. Follower's ration reaction set for x E S(X): 

P(x) = {y E Y: y E argmin[f(x, y): y E S(x)]} 

5. Inducible region: 

IR = {(x,y): (x,y) E S,y E P(x)} 

To ensure that the BLPP is well posed it is common to assume that S is nonempty 

and compact, and that for decisions taken by the leader, the follower has some room 

to respond, i.e., P(x) =/= 0. The rational reaction set P(x) defines the response while 

the inducible region I R represents the set aver which the leader may optimize. Thus 

in terms of the above notation, the BLPP can be written as: 

min {F(x, y) : (x, y) E I R} . 
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Unlike linear programming, the identification of the optimal solution fora BLPP 

is generally a very hard task. More formally, it has been proved that the BLPP 

is strongly NP-hard. Thus the need for heuristics or approximate algorithms for 

finding a solution of good quality in acceptable time. However, some properties of 

the optimal solution of a BLPP are known: 

Property l Unless the follower's terms in F and f are collinear (i. e., d1 = ad2 , a> 

O) there is no assurance that the optimal solution t o the BLP P will be Pareto opti mal. 

Property 2 The inducible region can be written equivalently as a piecewise linear 

equality constraint comprised of supporting hyperplanes of S. 

Property 3 An optimal solution to BLPP occurs at a vertex of I R. 

Property 4 An optimal solution to BLPP occurs at a vertex of S. 

The meaning of the above definitions and properties are geometrically clarified 

and explained considering the following BLPP: 

9 
max -x+ -y 

x 2 
s. t. miny 

y 

x+y~2 

-x+ y ~l 

x+ 2y::;; 14 

2x- y::;; 8 

x,y ~O 

Fig. 4.4 depicts this BLPP. The constraint region S is the light gray region. For a 

given point x1 in the projection set S(X), the feasible set S(x1) and the reaction 

set P(x1) are given. The thick solid line represents the inducible region I R. In this 

specific case Property l holds. In fact, the optimal solution P* is dominateci by all 
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the other points in the region delimitated by the hyperplanes y = 4, -x+(9/2)y = 12 

and -x+ y = l. Finally, it is easy to see that Properties 2 - 4 are fulfilled. 

S(X) 

Figure 4.4: Bilevellinear programming problem 

4.5 Inducible regions 

According to Property 3, the optimal solution lies on a vertex of the inducible region. 

This is the leader's inducible region, of course. However, if we assume to exchange 

the role of the players, a follower's inducible region may be similarly defined. As 

it will be shown in the next Chapter 5, for solving BLPP (2) the inducible regions 

of both players are required. In this section, we define them and we show that 

due to the presence of the frontier nodes or, otherwise stared, due to the fact that 

the subnetwork GQ disconnects sources and destinations, the inducible region may 

be easily determined by solving a Minimum and a Maximum Cost Flow Problem, 

respecti vely. 
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Definition 2 Given a network G = (N, A) where constraints {2c)- {2g) hold, de fine 

as frontier flow vector any vector"" E ~INI such that BPQx ="" and BQPY = -K,. 

Note that the component ""i of vector ""is nothing else than the flow passing form 

the subnetwork QP to the subnetwork GQ through the frontier node i. For this 

reason the vectors "" are referred to as frontier fiow vectors. As an example, in 

Fig. 4.2a the frontier vector is "" = (-l, -l, 2, O) and in both Fig. 4.2b and 4.2c is 

""= (-1, -1, l, 1). 

Definition 3 For any frontier fiow vector ""' define 

According to these definitions, the following theorem trivially holds: 

Theorem 2 Ifa point (x, y) is feasible for constraints (2c) - (2g), then it exists a 

frontier fiow vector "' such that x E Xk and y E yk. Conversely, if a frontier fiow 

vector"" exists such that both Xk and yk are non empty, then any point (x,y) where 

x E Xk and y E yk is a feasible solution for BLPP {2). 

By extending the definitions introduced in Section 4.4 and closely parallelling the 

arguments in Section 4.3 in Ba§ar and Olsder (1999), i t is now possible to define the 

leader's and follower's rational reaction sets and inducible regions. 

Definition 4 Given BLPP (2), let exist a frontier fiow vector"" such that both Xk 

and yk are non empty. Since the minimum of cpP(x, y) with respect to x E Xk ~s 

attained for each y E yk, the set RP (y) C Xk defined by 

is called the optimal response or rational reaction set of player P. The set 
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is called the inducible region ofplayerQ. Likewise, RQ(x) = {(E yk: c/JQ(x,() 2:: 

cpQ(x,y)\ly E Yk} and JRP = {(x,y): x E Xk,y E RQ(x)} are, respectively, the 

rational reaction set of player Q and the inducible region of player P. 

According to this definition, in BLPP (2), being the flows "" fixed, RP(y) is deter

mined solving a Minimum Cost Flow Problem. Similarly, RQ (x) is the solution of a 

Maximum Cost Flow Problem. Hence the following theorem holds: 

Theorem 3 RP(y) and RQ(x) depend only on the frontier fiow vector ""' i.e., 

RQ(x) = JQ(""), \lx E Xk, and RP(y) = jP(~), \ly E Yk, where jP and JQ solve a 

minimum and maximum cost fiow problem, respectively. 
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Chapter 5 

The optimal solution 

The optimal solution of any BLPP lies on a vertex of the leader's inducible region. 

Since in this work we always referto Game l where player P plays first, the optimal 

solution of BLPP (2) lies on a vertex of the shipper's inducible region. In Section 

4.5, we state that for any feasible frontier fiow ""' the shipper's and follower's rational 

reaction sets are easily determined by solving a Maximum and Minimum Cost Flow 

Problem, respectively. Relying on this result, we now develop an algorithm which 

allows to move from a starting point of the shipper's inducible region to another point 

in the shipper's inducible region always providing a better solution for him. When 

no further "better" points may be attained, the algorithm stops. U nfortunately, 

only a local optimum is identified. 

The rationale behind the algorithm stems from the consideration that the op

timal solution for BLPP (2) is also a Nash equilibrium point for BLPP (2). In 

particular, the algorithm moves from a Nash equilibrium point for BLPP (2) to an

other "better" Nash equilibrium point. Section 5.1 presents the definition of Nash 

equilibrium for BLPP (2) and proves that the optimal solutions are Nash equilibria. 

The identification of such equilibria relies on the Negative Cycle Optimality Con

ditions for solving a Minimum Cost Flow Problem. Section 5.2, entirely based on 

Ahuja, Magnati and Orlin (1993) provides the relevant definitions and theorems for 

introducing such conditions in the generai case. Section 5.3 extends these defini-
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tions and theorems to the two-players network under study and links them to the 

Nash equilibrium point of BLPP (2). Finally, Section 5.4 introduces the local search 

algorithm. 

5.1 Equilibrium points 

In this section, we introduce the concept of Nash equilibrium point for BLPP (2) 

and we prove that any optimal solution for BLPP (2) is also a Nash equilibrium 

point. 

Given a leader's choice x, the follower's rational reaction set represents the best 

value(s) that can be attained by her for that specific move x. Likewise, given a 

follower's choice y, the leader's rational reaction set represents the best value(s) 

that can be attained by him for that specific move y. It follows that none of the 

players can improve his (her) outcome without degrading the performance of the 

other player if and only if their choice (x, y) lies on both reaction sets, i.e., we may 

state the following definition (see Ba§ar and Olsder, 1999): 

Definition 5 A feasible point (x, y) which belongs t o both the inducible regions I RP 

and IRQ is called a Nash Equilibrium Point for BLPP (2), i. e., the Nash Equilibria 

Set (NES) is formally defined as: 

As a counterexample, consider the frontier vector "" = (1, l, -l, -l). The vector 

x= {xAB = l,xAc = l,xDF = l,XEF =l} and y = {YBD = l,YBE = O,YcD = 

O, YcE = l} is a feasible solution and belongs to I RP, but y is not a point of player 

Q rational reaction. This is clearly no t a N ash equilibrium because player Q can 

improve her outcome (moving to her rational reaction point y = {YBD = O, YBE = 

l, YcD = l, YcE =O}) without degrading the shipper's choice. 

Theorem 4 A feasible point (x'", y"') where x"'= arg min cPP x and y"' = arg max cQQY 
xEXk yEYk 

is a N ash equilibrium point. 
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Proof Just check that x,. E RP(y) and y,. E RQ(x) . D 

Hence from Theorem 3 and given a feasible frontier vector ~, a Nash equilib

rium point is obtained by solving a minimum and a maximum cost flow problem, 

respectively. 

We may now characterize the optimal solution of BLPP (2). First, we prove the 

existence of the optimal solution. Then, we show that i t is also a N ash equilibrium 

point. 

Theorem 5 If BLPP {2) has feasible solutions, it always admits an optimal solu

tion. 

Proof If conditions (2c) - (2g) define a nonempty set, this is a compact set and 

RQ(x) =/= 0. If RQ(x) is a singleton, BLPP (2) is well posed and admits optimal 

solution (cf., e.g., Bard, 1998). If RQ(x) is not single-valued and holding the cooper

ative attitude of player Q assumption, the unique optimal solution for the player P 

may be achieved by means of incentive schemes as described in Bialas and Karwan 

(1984). D 

Theorem 6 An optimal solution far BLPP (2) is a Nash equilibrium point. 

Proof Let (x*, y*) be an optimal solution for BLPP (2) and ~* the corresponding 

frontier flow vector. On on side, since player P plays first, (x*, y*) certainly be

longs to IRQ. On the other side, we prove that (x*,y*) belongs also to JRP, i.e., 

cj?(x*, y*) ~ cj?(x, y*) for any feasible x given y* (i.e., V x E Xk*). By contradiction, 

let x E Xk* be such that cj?(x,y*) < cj?(x*,y*). It follows that cPP x< cPP x*. Since 

(x*, y*) is an optimal solution of BLPP (2), 

Hence RQ(x*) < RQ(x). But Theorem 3 contradicts this result. D 

A N ash equilibrium point is always referred to as the solution of a simultaneous 

game (see, e.g., Osborne and Rubinstein, 1997). Conversely, a Stackelberg equilib

rium point is the solution of a sequential game. Theorem 6 states that the optimal 
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solution of the BLPP (2) (a sequential game) may also be obtained as an outcome 

of a simultaneous game (which is a completely different situation, of course). Thus 

we could conclude that it would be sufficient to play a simultaneous game to solve 

BLPP (2), as well. This would be a very attractive result because the simultaneous 

game may be solved simply by means of minimum and maximum cost fiow prob

lems, as proved earlier. Unfortunately, this is not true. In fact, when a simultaneous 

game is played, many different Nash equilibria may exist. But a-priori we do not 

h ave any evidence that bot h players would meet exactly a t the N ash equilibrium 

which is also the Stackelberg one. And, if they reach a Nash point that is not a 

Stackelberg one they do not have any reason to move apart from there. Hence the 

importance of Theorem 6: BLPPs are NP-hard problems, but this theorem allows 

to restrict the search for the optimal solution in the Nash Equilibria Set (N ES) 

only. The algorithm introduced in the last section of this chapter performs a local 

search in this N ES. Sections 5.2 and 5.3 provide the theoretical framework required 

to correctly define this algorithm. 

5.2 Residua! network 

This section introduces the Negative Cycle Optimality Conditions for solving a Min

imum Cost Flow Problem (MCFP) in the general case. 

Let G = (N, A) be a directed network with a cost Cij and a capacity uij associateci 

with every are (i, j) E A. We associate with each node i E N a number b(i) which 

indicates its supply or demand depending on whether b( i) > O or b( i) < O. The 

minimum cost fiow problem can be stated as follows: 

min z(x) 

subject to 

L CijXij 

(i,j)EA 

~ X"- ~ X··-b(i) ViEN 6 'tJ 6 J't-

{j:(i,j)EA} {j:(j,i)EA} 

o:::; Xij :::; Uij V(i,j) E A 

We further make the following assumptions: 
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l. All data ( cost, supply / demand, an d capacity) are integrai; 

2. The network is directed; 

3. The supplies/demands at the nodes satisfy the condition LiEN b(i) = O and 

the minimum cost flow problem has a feasible solution; 

4. All are costs are nonnegative. 

Definition 6 The residual network G(x) corresponding to a fiow x is defined as 

follows. We replace each are (i,j) E A by two arcs (i,j) and (j,i). The are (i,j) 

has cast cij and the residual capacity rij = Uij - Xij, and the are (j, i) has cast 

c1i = -cij and residual capacity r1i = Xij. The residual network consists only of arcs 

with positive residual capacity. 

Definition 7 A cycle W (not necessarily directed) in G is called an augmenting 

cycle with respect to the fiow x if by augmenting a positive amount of fiow f(W) 

around the cycle, the fiow remains feasible. 

In terms of residual networks, each augmenting cycle W with respect to a flow x 

corresponds t o a directed cycle W in G (x), an d vice versa. 

Theorem 7 Augmenting Cycle Theorem. Let x and X0 be any two feasible 

solutions of a network fiow problem. Then x equals. X0 plus the fiow on at most m 

directed cycles in G(x0
). Furthermore, the cast of x equals the cost of X0 plus the 

cast of fiow on these augmenting cycles. 

Theorem 8 Negative Cycle Optimality Conditions. A feasible solution x* is 

an optimal solution of the minimum cast fiow problem if and only if it satisfies the 

negative cycle optimality conditions: namely, the residual network G(x*) contains 

no negative cast ( directed) cycle. 

Proof: Suppose that x is a feasible flow and that G(x) contains a negative cycle. 

Then x cannot be an optimal flow, since by augmenting positive flow along the cycle 
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we can improve the objective function value. Therefore, if x* is an optimal fiow, 

then G(x*) cannot contain a negative cycle. Now suppose that x* is a feasible fiow 

and t ha t G (x*) contains no negative cycle. Let X0 be an optimal fiow an d X0 =/= x*. 

The augmenting cycle property shows that we can decompose the difference vector 

X0
- x* into at most m augmenting cycles with respect to the fiow x* and the sum 

of the costs of fiows on these cycles equals ex0
- ex* ~ O, or ex0 ~ ex*. Moreover, 

since X0 is an optimal fiow, ex o :::; ex*. Thus ex0 = ex*, and x* is also an optimal 

flow. This arguments shows that if G(x*) contains no negative cycle, then x* must 

be optimal, and this conclusion completes the proof of the theorem. D 

For further details and examples, the interested reader may directly refer to 

Ahuja, Magnanti and Orlin, 1993. 

5.3 Relationships with MCFP 

According to Theorems 3 and 4, the optimal solutions of BLPP (2) can be charac

terized in terms of Nash equilibrium points. In this section, it is shown the tight 

relationship of a Nash equilibrium point with the solution of a particular MCFP. 

Let us introduce the following definition: 

Definition 8 Define Gr(x, y) = (N, Ar) as the residual network of G with respeet 

to the fiows x,y, where the areset is Ar = {(i,j) : (i,j) V (j,i) E A}. The are 

capacities and costs are defined according to the following Table 5.1: 

l (i,j) E AP l (j,i) E AP l (i,j) E AQ l (j,i) E AQ 

Capacity Uij- Xij X·· ~J uii- Yii Yii 

Costs pp QP 
eij 'eii 

pp QP 
-eii '-eii 

QQ PQ 
eij 'eii 

QQ PQ 
-eii '-eii 

Table 5.1: Are capacities and costs of the residual network Gr(x, y) 

Trivially, Gr(x, y) represents the network of the residual capacities that can be 

stili used o n the network G given the fiows x, y. Accordingly, de fine Gf (x) an d G~ (y) 
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the residual subnetworks corresponding to subnetworks GP and GQ, respectively. 

As an example, consider the network in Figure 5.1. Figure 5.1.a) shows a network 

G and a feasible flow on i t. Let the black arcs of G belong to A P an d the grey arcs to 

A Q. Each are (i, j) E A P is characterized by a cou p le of val ues (c~ P, Uij), indicated 

near the are, and by the value c~P that is assumed equal to c~P, e.g., the are (s, A) 

has c~f = c~J = l an d uii = 2. Similarly, each are (i, j) E A Q is characterized by 

a couple of values ( c;Q, Uij) and c~Q = c~Q. Let node s be the origin and t be the 

destination with b~ = 2 and bf = -2, respectively. Finally, let the thick arcs in 

G indicate arcflow different from zero. In particular, XsA = XsB = Xct = XDt = l 

and YAc = YBD = l. Figure 5.1.b) shows the residual network Gr(x, y) induced 

to the above described feasible ·flow. The values (c~ P, uii) or ( c~Q, Uij) are again 

represented dose to the arcs. 

The following theorem allows to practically identify a N ash equilibrium point. 

Theorem 9 A point (x, y) is a Nash equilibrium point for BLPP {2) if and only if 

the residual subnetworks c; (x) an d G~ (y) contai n no negative, with respect to the 

values cPP, and positive, with respect to the values cQQ, cost cycles, respectively. 

Proof Let us prove first the "only if" part by contradiction. Let (x, y) be a Nash 

equilibrium point. Then consider the frontier flow vector "" associateci to it and 

assume that a residual c;:(x) contains a negative cost cycle. Then, according to 

the Negative Cycle Optimal Conditions Theorem for the MCFP (see Section 5.2), 

player P can define a new flow x', which imposes the same frontier vector ""' such 

that cPPx' < cPPx. Being ""constant, the feasibility of (x,y) implies the feasibility 

of (x', y). Since cPP x'+ cPQY <cPP x+ cPQy, then (x, y) is nota Nash equilibrium 

point. Symmetrical arguments hold for player Q if G~(y) contains a positive cost 

cycle. 

Consider, now, the "if" part. Let (x, y) be given and since c;:(x) and G~(y) 

contain, respectively, no negative an d positive cost cycles, we prove t ha t (x, y) is a 

N ash equilibrium point. Consider player P ( symmetrical arguments hold for player 
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(6,2) 

}8 
a) 

Figure 5.1: a residual network 

Q). Since flows y are fixed, and hence the value of the frontier flows ~, Negative 

Cycle Optimal Conditions Theorem for the MCFP guarantees that P cannot define a 

different feasible solution x' such that cPP x' <cPP x. Being the cost component cPQY 

fixed by hypothesis, the previous argument proves that (x, y) is a Nash equilibrium 

point. D 

As an example, consider again the network in Figure 5.1. Figure 5.1.a) shows a 

feasible flow on it, minimal for player P, but which is not a Nash equilibrium point. 

Actually, the residua! subnetwork G~(y) contains a positive cost cycle, as shown by 

the thick arcs in Figure 5.2.a). The cost of the cycle is 17 and the maximum flow 

that can circuiate in it values one. The thick arcs in Figure 5.2.b) show the new 
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feasible flow (x, y') that is also a Nash equilibrium point. Such a flow is obtained 

summing the arcflow defined by the positive cycle to the original flow (x, y). In 

(x, y') all the non null arcflows are equal t o one. 

(-1,1) 

~ (1,1) 

~) 
a) 

~1,2) 

~1,1) 

b) 

Figure 5.2: A positive cycle and an equilibrium flow 

The following definitions and results, given a Nash equilibrium point, allow to 

determine a new o ne associa t ed to a different frontier flow vector, when i t exists. 

Definition 9 Define G(x, y) = (N, A) as the network of the residual paths of G 

with respect to the fiows (x, y), where the set of arcs A includes a pair of directed 

arcs (i, j)P, (j, i)Q for each ordered pair of nodes i, j E N such that there exists a 

directed path form i t o j in c; (x, y) an d a a directed path form j t o i in G~ (x, y). 
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Eaeh are (i, j)P has assoeiated a eost c~,j)P eorresponding t o the eost of the mini mal 

path from i to j on the residual network Gf(x). Besides, it has assoeiated a eost 

c~,j)P equal to the eost of the previously identified path when evaluated with eosts 

eQP. Aeeordingly, eaeh are (j, i)Q has a eost c3,i)Q eorresponding to the eost of the 

maximal path from j t o i o n the residual network G~ (y) and i t has also assoeiated 

a eost c[;,i)Q equal to the eost of the previously identified path when evaluated with 

eosts ePQ. Eaeh are has also a eapaeity ù equal t o the minimum eapaeity of the ares 

of the assoeiated path. 

Definition 10 Given G(x, y) = (N, A), define as an alternating cycle a ( direeted) 

eycle C made of an are (i, j)P and an are (j, i) Q. Finally, de fine also Dc the capacity 

of an alternating eycle C as the minimum eapaeity of the ares defining C. 

Figure 5.3.a) shows the network of the residual path G(x, y') induced by the 

fiow in Figure 5.2.b). In particular, the thick arcs highlight a feasible fiow (xc, Yc) 

of value l in an alternating cycle with negative cost -14 with respect to <PP. Here 

and in the following, with an abuse of notation, (xc, Yc) indicate both a feasible fiow 

in the alternating cycle C of G(x, y') and the fiow of equal value on the arcs of G 

defining the two paths which compose C. 

Theorem 10 Given a Nash equilibrium point (x, y), assume that the assoeiated 

network of the residual paths G(x, y) has an alternating eycle C, with Dc > O. 

Then, any point (x +xc, y+yc), where (xc, Yc) is a feasible fiow for C, is a new Nash 

equilibrium point. 

Proof Any point (x+ xc, y+yc) is trivially feasible by construction. Let us now prove 

that it is a Nash equilibrium point by contradiction. Assume that (x+ Xc, y + Yc) is 

nota Nash equilibrium point. Then, by Theorem 9, there should exist either at least 

a negative cycle in Gf(x +Xc,) or at least a positive cycle in G~(y + Yc)· However, 

the existence of a negative cycle in Gf (x + xc) contradicts the minimality of the 

path associateci to the arcs in C. Symmetrical arguments hold fora positive cycle in 
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G~(y + Yc)· Actually, since (x, y) is a Nash equilibrium point, there are no negative 

cycles in G;!(x). Networks G;!(x) and G;!(x+xc) differ only fora path p(j, i) from a 

frontier node j to another frontier node i. Then any negative cycle must include at 

least a part of such a path. Such an argument implies the contradiction that there 

exists a path form i to j o n G~ (x) which is less expensive t han the one associa t ed 

to (i,j)P. D 

The thick arcs in Figure 5.3.b) show the new feasible flow (x+ Xc, y' + Yc) that 

is also a Nash equilibrium point. Such a flow is obtained summing the flow (x, y') 

in Figure 5.2. b) with the one defined by the alternating cycle highlighted in Figure 

5.3.a). In (x+ Xc, y' + Yc) all the non null arcflows are equal to one except the one 

on are (D, t) which is equal to 2. 

5.4 A heuristic algorithm 

In this section, an upper bound to the optimal solution to BLPP (2) is proposed 

when the subnetwork cP is disconnected. In this context, a modification of the basic 

Cycle-Cancelling algorithm for MCFP problems based on Negative Cycle Optimal 

Conditions Theorem for the MCFP is introduced. Our algorithm, as the originai one 

for MCFP, turns out to be pseudopolynomial, but it can be reduced to be polynomial 

by appropriate scaling of the network parameters. This reduction is identica! to the 

corresponding one used for the algorithms of the MCFP, then it is not reported in 

this work. The interested reader may refer again to Ahuja, Magnanti and Orlin, 

1993. 

First the concept of a network without negative P cycles is stated. 

Definition 11 A residual network Gr(x, y) is defined as negative P cycle free if 

none of the following conditions is true: 

{i) there is a positive cycle in G~ (y); 

{ii) there is a negative cycle in c;: (x); 
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fi' 
(o' 1 ) ( -4' 1 ) ( -13' 1 ) ( -1 5' 1 ) (-2' 1 ) ( -1 ' 1 ) ( 1 ' 1 ) 

a) 

f:"J1,2) 

~1,1) 

~/J 

b) 
~/=:-\ (19,2) 

~(4,1) 

(6,2)0 

Figure 5.3: An alternating cycle and the induced equilibrium fiow 

(iii) there is an alternating cycle in G(x, y) such that the sum of the costs <PP of 

the arcs of the cycle is negative. 

According to this definition, the following result holds: 

Theorem 11 For any optimal solution (x, y) to BLPP {2)7 the corresponding resid

ua[ network Gr(x, y) is negative P cycle free. 

Proof Since an optimal solution of BLPP (2) is a Nash equilibrium point (Theorem 

6), the residual subnetworks G~(x) and G~(y) contain no negative and positive cost 

cycles, respectively (Theorem 9). Hence the first two conditions are fulfilled. The 

third condition is proved by contradiction. If (x, y) is an optimal solution point, 
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assume t ha t there exists an alternating cycle C in G (x, y) su eh t ha t the sum of 

the costs cP of the are of the cycle is negative. Then Theorem 10 guarantees the 

existence of a different Nash equilibrium point (x+ xc, y + Yc) with an associateci 

frontier fiow ~c. By construction of C, cPP (x + xc) + cPQ (y + Yc) < cPP x + cPQ y, 

then the new Nash equilibrium point (x+ xc, y + Yc) is preferred by P and can be 

obtained by imposing the fiow x + Xc which, in turn, imposes ~c. Hence (x, y) is 

not an optimal solution to BLPP (2). D 

On the basis of the above Theorem 11, starting from a feasible fiow in G(N, A) 

the following algorithm determines a Nash equilibrium point and moves, if it exists 

an alternating cycle in G(x, y) such that the sum of the costs c/JP of the arcs of 

the cycle is negative, to another N ash equilibrium point improving the value of cPP. 

Sin ce these are points in player Q rational reaction set RQ (x), they belong t o the 

inducible region IRQ identifying an upper bound t o the optimal solution of BLPP 

(2). When no negative P cycles can be determined, the algorithm stops in a local 

optimum. 

ALGORITHM Cycle Cancelling 

l. determine an initial feasible fiow (x0 , y0 ) and set k = O 

2. look for negative P cycles C and modify the fiow adding to (xk, yk) the max

imum circulation (xc,yc) feasible for C obtaining (xk+l,yk+l) = (xk,yk) + 

(xc,yc) 

3. set k = k + l and repeat step 2 until no negative P cycles can be determined. 

The algorithm term1nates in a finite number of steps. The initial feasible flow 

(x0
, y0

) is detected, as an example, first relaxing the bilevellinear problem by drop

ping the lower level objective function and solving the corresponding Minimum Cost 

Flow Problem over the whole network. If ties for player Q choice exist, zero cost 

cycles with respect to the values cQQ in G~(y) may be detected. In this case, under 
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the assumption of a cooperative attitude of player Q, a Nash equilibrium point is 

reached when in G~ (y) none of the zero cost cycles with respect t o cQQ is a negative 

cost cycle with respect to cPQ. Hence the algorithm has to be slightly modified to 

encompass this situation. 
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Chapter 6 

The freight traffic 

The road freight traffic from Turkey to Centrai and Western Europe and vice versa 

suffered major disruptions because of the war in Balkans during the nineties. The In

ternational Transporters' Association of Turkey is the shipper controlling the quasi

totality of this traffic thus assuming the role of player P. He had to cope with an 

"adverse entity" able to modify the available capacity on some specific links his ve

hicles had to pass through. The region involved in the conflict may be represented 

as a connected subnetwork disconnecting the origin and the destinations of the road 

transportation network since alternative road routes are not easily affordable. Other 

possibilities, like the seaborne links now operating, did not exist at that time. Hence 

the whole freight traffic was performed using a single mode of transport. The mod

els developed in this work allow the shipper to perform a worst-case analysis at 

the strategie level for this situation assuming that player Q wishes to maximize the 

costs he has to afford when going through the region under her control. In fact, it 

is meaningless to talk about the utility or the profit the war may seek to maximize. 

However, i t becomes a sensible modelling when the utility of player Q is strictly 

related to the costs afforded by player P on this portion of the network. lf player 

Q is maximizing her utility which corresponds to player P's costs, automatically 

she plays to maximize player P's costs. Hence the model represents a worst-case 

analysis for player P. 
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The situation UND had to face when the war in the Balkans started motivates our 

investigation on network games when handling uncertainty in the analysis of traffic 

and transportation systems at the strategie level is a major concern. As highlighted 

in Chapter 3, we propose an approach which extends and merges together results 

from different contexts. In Chapter 4 and in Chapter 5 we prove originai theorems 

and implementa new heuristic algorithm. However, as described in Chapter 7 where 

some possible further research lines are introduced, some model refinements and 

advances are necessary to correctly depict the whole complexity of the shipper's past 

and present actual behavior. In fact, we do not address all the aspects and details 

of the actual freight transportation system, but we provide a sound theoretical 

framework to capture some of its main properties. In this context, this dissertation 

might be considered as a building block to be later exploited and further expanded 

when the modelling of the whole complex system is required. To this aim, relying on 

actual and updated data, we build a simplified graph representing the road network 

under study, even though some strict assumptions had to be introduced. Hence 

the results provided in Section 6.3 give an estimate of the economie advantages the 

shipper may benefit when modelling the worst-case analysis as an adverse player 

and solving the game with bilevel linear programming. 

In the next Section 6.1, the main aspects of the road freight traffic within the 

existing freight transportation framework are briefly outlined. The following Section 

6.2 provides the relevant assumption, information and data used in the graph con

struction. Finally, in Section 6.3 the Cycle Cancelling algorithm has been applied to 

the network just introduced and its results have been compared with the outcome 

obtained by using an exact enumeration procedure. Since it turns out that the per

centage errar of the heuristic algorithm is equal to c% < O, 5%, we may claim that 

its performances are certainly highly satisfactory, at least in this specific example. 
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6.1 Description of the system 

The main features of the road freight transportation system of the Republic of 

Turkey are now introduced. Since the most complete and updated data set backs 

to 1997, all the data are referred to this specific year and may be found in "Annual 

Report of UND 1997-1998" published in 1999. 

The foreign trade of Thrkey as per transport modalities is shown in the following 

Table 6.1. The export and import flows measured in terms of thousands of tons are 

represented considering both the turkish and foreign flag carriers. 

Export Import 

Modality TR Flag Others TR Flag Others T o tal % 

Sea 7.334 14.676 26.438 47.100 95.548 87,2% 

Railway 145 6 96 85 332 0,3% 

Road 4.791 1.643 3.325 1.811 11.570 10,6% 

Airway 67 48 194 140 449 0,4% 

Others 61 o 1.604 18 1.683 1,5% 

Total 12.398 16.373 31.657 49.156 109.582 100,0% 

Table 6.1: Foreign Trade of Thrkey as per Transport Modalities in 1997 

The last column indicates the incidence of each transport mode out of the total 

foreign trade and shows that the road transport is the second mode for freight trans

port accounting for a little more than 10% out of the total. Within this transport 

modality, the turkish flag carriers handle 8.116.588 thousands of tons representing 

the 70,1% of the freight transported by road. 

In this context, UND (Uluslararasi Nakliyeciler Dernegi, i.e., International Trans

porters' Association) is the largest turkish association of the sector. In fact, 87% of 

transport companies active at internationallevel are UND members. Their number 

increases each year: from 375 members in 1993 to 623 members in 1997 and 794 in 

1998. Since the breakdown of the freight transported by UND members and UND 
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non members is not available, we approximate by saying that all the road freight 

traffic is performed by UND members. Hence UND is a shipper which controls 7,4% 

of the overall freight traffic of Turkey. UND fieet is composed of 23.629 tractors and 

28.915 (semi-) trailers, 4. 789 trucks and 640 tankers providing a payload capacity 

of 697.588 thousands of tons. In 1997, UND vehicles globally made 375.181 trans

ports. Each transport can be made in two different ways: either it is completely 

a road transport, either part of it is performed by road and in the remaining part 

the vehicle is load o n a RO-RO vessel. Some destinations are reached only by road 

(e.g., Iran and Middle East). By contrast, European countries and the Republics of 

the former Soviet Union are connected either by road either by RO-RO lines. 

Since we are interested in the way the shipper afforded the Balkans war during 

the nineties, the freight traffic between Turkey and Centrai and Western Europe 

is considered. Detailed data are available for the export component only, i.e., from 

Turkey towards Europe. Obviously, similar analysis may be performed for the freight 

traffic in the apposite direction. Table 6.2 depicts the breakdown of UND export 

transports as per aggregate destinations in 1997. 

Destination Export transports 

Euro p e 110.028 

Middle East 35.211 

Ex Soviet U nion 71.532 

Total 216.771 

Table 6.2: UND Export Transports as per Aggregate Destinations in 1997 

According to 1997 figures, approximately 65.000 (i. e., 59%) of these road trans

ports to Europe actually perform its entire travel by road. The remaining 41% loads 

the vehicles o n RO-RO vessels operating o n four different lines connecting Tur key 

to Italy. The total number of trips to be considered is further reduced because ca. 

15.000 journeys end before entering or inside the Balkans. Hence the final amount of 

fiow units passing through the region controlled by the adverse entity and reaching 
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Centrai and Western Europe is nearly equal to 50.000 transports. 

6.2 A simple graph 

According to the assumptions made in Section 1.2 and in Chapter 4, the bilevel 

linear games under study apply to a single origin, single destination and acyclic net

work disconnected by the region controlled by the adverse entity. At the aggregate 

strategie level, this framework depicts to some extent the situation UND faces when 

considering the fiow from Thrkey and the North West of Europe. This destination 

far from the Balkan region has also been chosen to make the network not too trivial, 

i.e., with a significant number of nodes and arcs in both the player P and Q regions. 

Hence the total traffic taken into account from 50.000 units is further reduced to 

28.000 vehicles and an acyclic network which includes a single source (Thrkey) and a 

single sink ( near Paris) is considered. As a further assumption, for balancing the size 

of sub-networks GP and GQ in terms of number of arcs and nodes, the adverse region 

has been enlarged and comprehends countries which were not directly involved in 

war operations (i.e., Rumania, Bulgaria, Greece, Hungary, Slovakia, Czech Republic 

and Eastern Austria). 

The graph is composed of 99 nodes and 181 arcs. The nodes differentiate in 

10 frontiers nodes (Table 6.4), 36 nodes in the subnetwork GQ (Table 6.3) and 53 

nodes in the subnetwork GP (Table 6.5). Actually, for modelling purposes each node 

representing a country border gate is split in two parts and a dummy are connecting 

these two nodes has been inserted. For sake of clarity, only one of these two nodes 

is shown in the just mentioned Tables. 

Player P controls a subnetwork composed of 100 arcs. The others 81 links rep

resenting the connections within the Balkans and Eastern Europe form a connected 

subnetwork. In Figure 6.1 the network layout is provided. The dark arcs belong to 

region P an d the light arcs are controlled by player Q. Only the main road links 

have been considered (motorways or highways). The capacities are calculated taking 
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into account the total number of transit permits available for each country. This 

figure is annually fixed in bilatera! Joint Committee Meetings. Player P's costs, 

cPP an d cPQ, are the aver age generalized costs derived as a function of lengths an d 

transfer times in the physicallinks. Since player Q does not have profits or losses for 

the fl.ows passing through the P zone, cQP are set equal to zero. It is also assumed 

that the profits she earns for each unit of fl.ow going through the arcs under her 

control are equal to the costs afforded by the shipper when traversing these arcs, 

i. e., cQQ = -cPQ. All the relevant data required to calculate these figures are col

lected in the UND Annual Sector Report 1997-98. In Table 6.6 and Table 6. 7, the 

origin and destination nodes of each are are identified for both regions. The values 

of cPP or cQQ ( thousands of Italian Lira) an d uP or uQ ( thousands of vehicles) are 

also provided for each link. Dummy arcs connecting the two nodes representing a 

national border gate are also shown. 

N ode L abel N ode L abel N ode L abel 

105 GR-YU 125 Praha 198 Szeghed 

106 BG-YU 147 Salzburg 199 Sibiu 

107 BG-R (Ruse) 187 R-H 207 Beo gr ad 

108 BG-R (Siret) 188 SLO-A 230 Botevgrad 

109 Nis 190 Skopje 232 Caransebes 

110 Bucarest 191 Cacak 233 Craiova 

112 Ljubljana 192 Titograd 234 Hateg 

113 SLO-H 193 Dubrovnik 235 Timisoara 

114 Budapest 194 Sarajevo 236 Se bes 

117 H-A 195 Novisad 237 Brasov 

118 Wien 196 Zadar 238 Thrda 

119 H-SK 197 Zagreb 239 Oradea 

Table 6.3: Nodes in GQ 
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N ode L abel N ode La bel 

102 TR-GR (Ipsala) 141 1-SLO 

103 TR-BG (Kapikule) 143 1-A (Tarvisio) 

104 TR-BG (Derekoy) 148 A-D (Salzsburg) 

124 D-CZ 158 A-D (Passau) 

140 Trieste 206 Dresden 

Table 6.4: Frontier nodes 

N ode L abel N ode L abel N ode L abel 

l Turkey 155 Koln 205 Jena 

2 France 156 D-B 208 Stuttgart 

100 lzmit 157 Bruxelles 231 Portile de Fier 

101 Istanbul 158 F-B 240 Bellinzona 

136 Genova 159 Amsterdam 241 Bad Ragaz 

137 I-F (Ventimiglia) 160 D-NL 242 Ulm 

138 Milano 161 Osnabri.ick 243 Ansbach 

139 Verona 173 Narbonne 244 Wi.irzburg 

142 Palmanova 174 Oange 245 Frankfurt 

144 1-F (Frejus) 175 Lyon 246 Dortmund 

145 1-A (Brennero) 176 Dijon 247 Clermont Ferrand 

146 A-D (Innsbruck) 177 Bordeaux 248 Brive 

149 Miinich 178 Paris 249 Fontainebleau 

150 Linz 200 Ziirich 250 Orleans 

151 A-D (Passau) 201 Poi tiers 251 Le Mans 

152 Niirberg 202 Toulouse 252 Rennes 

153 Berlin 203 Metz 253 Nantes 

154 Hannover 204 Kassel 

Table 6.5: Nodes in GP 
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ON DN cPP uP ON DN cPP up ON DN cPP up ON DN cPP uP ON DN cPP up 

l 100 81 1000 149 242 806 66 175 176 1337 14 208 203 2194 66 247 250 3738 14 

100 101 908 1000 152 243 292 66 175 200 3285 14 208 155 2604 66 248 177 2413 14 

101 l 02 3688 l 000 152 243 292 66 175 247 2250 14 208 245 1403 66 248 201 2638 14 

101 103 3530 1000 152 205 1368 66 176 249 1604 14 240 241 1348 66 249 178 535 14 

101 104 377 4 1000 152 204 2488 66 177 201 1757 14 240 200 1208 42 250 178 1027 14 

124 152 941 66 153 154 2594 66 178 2 81 1000 241 242 1768 66 250 253 2696 14 

136 137 1372 24 154 161 965 66 200 176 3089 14 241 200 632 40 250 251 1725 14 

137 1371 627 1000 155 159 1813 66 200 208 1768 66 242 243 1411 66 251 178 1785 14 

138 136 1258 24 155 156 941 66 201 250 1486 14 242 208 528 66 252 251 1330 14 

138 144 2307 24 156 1561 627 1000 201 253 2238 14 243 208 l 097 66 253 251 1598 14 

138 240 847 24 157 1581 528 18 202 177 1736 14 243 244 729 66 253 252 946 14 

139 145 2116 24 158 178 2119 14 202 248 2663 14 244 204 1097 66 1371 17 4 2823 14 

139 138 1328 24 159 157 1803 7 203 1561 1882 18 244 245 896 66 1411 140 132 24 

140 142 440 24 160 1601 627 1000 203 178 2299 14 245 246 1486 66 1461 149 677 66 

142 139 2049 24 161 155 986 66 204 154 1507 66 245 155 1188 66 1461 241 17 41 40 

143 142 827 24 161 160 667 66 204 246 1389 66 246 154 1236 66 1481 149 1170 66 

144 1441 627 1000 173 247 5050 14 205 204 1319 66 246 155 535 66 1511 152 1891 66 

145 1451 627 1000 173 202 1014 14 205 153 1389 66 247 249 3863 14 1561 157 941 18 

146 1461 627 1000 174 173 1645 14 206 153 1118 66 247 248 2325 14 1581 158 627 1000 

149 152 1433 66 174 175 1733 14 206 205 1014 66 247 201 3625 14 1601 159 1627 7 

Table 6.6: Arcs in GP 



ON DN CQQ UQ ON DN CQQ UQ ON DN CQQ UQ ON DN CQQ UQ ON DN CQQ UQ 

102 1021 627 1000 117 1171 627 1000 190 109 1661 39 230 231 3713 6 1031 107 8642 6 

103 1031 627 1000 118 150 1583 40 191 192 3922 39 230 106 788 6 1041 108 5209 6 

104 1041 627 1000 118 125 2563 40 191 194 2906 39 231 233 1475 42 1051 190 1850 39 

105 1051 627 1000 118 143 4053 40 192 193 2859 39 231 232 1350 42 1061 109 1288 39 

106 1061 627 1000 119 1191 627 1000 193 194 4825 39 232 234 900 42 1071 110 918 42 

107 1071 627 1000 125 206 1875 14 193 196 5906 39 233 110 2036 42 1131 113 627 1000 

107 230 4563 6 125 1241 2483 14 194 195 1775 39 233 234 3234 42 1171 118 541 40 

108 1081 627 1000 141 1411 627 1000 195 197 3455 39 234 236 500 42 1241 124 627 1000 

109 207 2938 39 143 1431 627 1000 196 197 4484 39 234 235 2750 42 1431 14 7 2231 40 

110 237 2125 42 147 148 108 40 196 140 4703 39 235 199 797 42 1441 175 2587 14 

110 236 3363 42 148 1481 627 1000 197 140 2339 5 236 199 2700 42 1451 146 1256 40 

112 141 783 3 150 147 1249 40 197 112 1688 5 236 238 1734 42 1871 114 3229 39 

112 188 718 3 150 151 844 40 198 195 2913 39 237 238 3984 42 1881 143 488 40 

113 112 2261 3 151 1511 627 1000 199 198 1313 39 238 239 2275 42 

114 117 1919 39 187 1871 627 1000 199 187 688 42 239 199 1463 42 

114 119 1148 39 188 1881 627 1000 207 195 382 39 1021 105 6529 10 

114 1131 3975 39 190 191 1488 39 207 235 1975 39 1031 106 5152 6 

Table 6. 7: Arcs in GQ 
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6.3 Numerica! experiments 

Since cQQ = -cPQ, multiple optima for player Q do not vary the value of cpP. 

Thus the following steps of the Cycle Cancelling Algorithm described in Section 5.4 

identify a local optimum: 

l. An initial feasible flow (x0 , y0 ) is detected first relaxing the bilevellinear prob

lem by dropping the lower level objective function and solving the correspond

ing Minimum Cost Flow Problem over the whole network. The generalized 

cost obtained is 1.063. 710 Miti. Then, given the divergences a t the frontier 

nodes, the Maximum Cost Flow Problem is solved for the Q region. At the 

equilibrium point, the cost to be afforded by the shipper turns out to be equal 

to 1.385.868 Mltl. Note that, the presence of negative (positive) cycles in 

G;'(x) (G~(y)) is ruled out due to the minimality (maximality) ofthe solution 

just obtained for the P (Q) region. 

2. A first alternating cycle C1 is identified. Then, adding to (x0
, y0

) the maxi

mum circulation ( Xcu Ycl) feasible for cl' a new equilibrium point (x\ y1) = 

(x0
, y0

) +(x eu Yc1 ) is obtained. The new value of P objective function is equal 

to 1.370.979 Mltl. 

3. A second alternating cycle C2 is identified. Then, adding to (x1 , y1
) the max

imum circulation (xc2 , Yc2 ) feasible for C2 , a new equilibrium point (x2
, y2

) = 

(x\ y1
) + (xc2 , Yc2 ) is obtained. The new value of P objective function is equal 

to 1.329.003 Mltl. 

4. No further alternating cycles exist, then the algorithm stops. 

The global optimum value for the considered problem is 1.324.927 Mltl and is 

obtained with a branch-and-bound procedure. Hence, the percentage error is equal 

to c% < O, 5%. The first rational solution used to initialize the branch-and-bound 

procedure was the one defining the equilibrium point at step l of the above Cycle 
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Cancelling Algorithm. The same procedure, after exploring less than ten nodes of 

the enumeration tree, determines the solution whose value is 1.370.979 Mitl. Finally, 

after visiting 1.247 nodes the optimal solution is established. 

These results prove the benefit of such bilevel linear programming modelling. 

The generalized cost obtained relaxing the bilevel linear problem by dropping the 

lower level objective function and solving the corresponding Minimum Cost Flow 

Problem over the whole network depicts the case where the shipper fully controls 

all the arcs of the network his flow goes through. U nfortunately, this favorable 

situation has to be ruled out when an adverse entity imposes her assignment on 

some given arcs. If the shipper is aware of such hostile attitude, some actions to 

prevent it has to be taken. In fact, if player Q is freely allowed to reassign the flow 

in her region without any further moves from player P, his costs would increase 

by 30%. When the shipper starts solving the bilevellinear programming game by 

identifying new Nash equilibrium points, the first flow reassignment would lower his 

extra-costs to a value equal to 28% more than the minimum cost flow assignment. 

In the following, a second alternating cycle allows player P to detect a new Nash 

equilibrium point which leads to further reduction of his extra-costs to 24,8% more 

than the minimum cost flow assignment. Since no further alternating cycles exist, 

then the algorithm stops. As a consequence of this game, the shipper understands 

t ha t the perfect knowledge of the behavior of his hostile player allows him to prevent 

her moves minimizing his losses due to her actions on the subnetwork his units 

must go through. When the shipper is not able to solve the exact bilevel linear 

programming problem (e.g., because of the large size of the network), the heuristic 

algorithm detects in polynomial time a solution which is an upper bound for the 

global optimum. In the specific example under investigation the heuristic and the 

exact solutions are very close: only 0,3% far apart. 
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Chapter 7 

Further researches 

Different extensions of the models and the algorithm developed may be easily en

visaged both from the theoretical and the application side. These advances would 

provide either faster local or global search algorithms either more complete models 

representing in deeper detail the actual system and the interactions among the actors 

involved. Hence a decision support system for the shipper's decision making pro

cess at the strategie level can be built and effectively used by freight transportation 

practitioners. In this Section, we briefiy introduce the main lines of development to 

be possibly followed according to the issue we are more interested in. 

7 .l The Algorithm 

The heuristic algorithm introduced in Chapter 5 has been applied on a simple net

work and in Section 6.3 its results have been compared with the outcome of a Branch 

& Bound procedure. In this specific case heuristics perform very well with a per

centage error equal to 0,3% with respect to the global optimum. Of course, this 

comparison is affordable for small problem instances only, as for the network we 

propose in Section 6.2. As a further research on this issue, it would be interesting 

to test the algorithm on larger, more complex and topological different networks 

to possibly identify its average and worst-case performances. Instances specifically 
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devoted to be used as test-beds for network algorithms are available on the Internet 

and could be considered as a reliable starting point for this task. 

A further interesting investigation stems from the possibility to integrate our 

approach with other exact procedures and implement an ( enumeration) algorithm 

able to identify, on the average, in affordable time also the global optima of large 

instances of the two games. In fact, bilevellinear programming problems are N P

hard problems, then the only certain way to attain a global optimum relies on 

enumeration algorithms. Bard (1998) provides an updated review of the main exact 

approaches for solving BLP problems. According to our main results, the new 

enumeration algorithm would restrict the search for the global optimal solution to 

the set of the N ash equilibrium points. In addition, i t would use the local optimum 

identified in polynomial time by the Cycle Cancelling Algorithm as an upper bound 

for pruning the Branch & Bound tree of the cost minimization problem. 

7. 2 The M o del 

Many developments are possible on this issue. Disregarding the initial main assump

tions ( see Section l. 2) the investigation of the consequent extended models may be 

performed. 

• Costs We first drop the assumption that costs are data already given. It might 

be more realistic to consider the case where player Q decides not only on the 

are capacities but also on the are costs. In particular, the following situation 

may be depicted: player Q plays the role of an Authority looking for regulation 

of player P's freight traffic. For instance, she may decide to support a specific 

transport modality and discourage the usage of another one. This behavior 

can be accomplished by imposing tolls or fares on the links of the penalized 

mode such that the shipper would suffer higher costs when using i t rather than 

passing through the toll-free arcs. Hence player Q has to decide on which arcs 

( of the penalized mode) and a t which value the tolls should be fixed, provided 
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that her overall profit should attain at least a minimum level. If we further 

assume that player Q bears some expenses in the revenue collection phase, she 

would also minimize the number of her arcs where tolls or fares are imposed. In 

a simple network composed of a single origin and a single destination, player Q 

would solve a minimum capacity cut problem. When multi-origins and multi

destinations are considered, the computational complexity increases and the 

problem becomes N P-hard. In addition, a decision on the are capacities has 

also to be taken when the adverse entity stili wishes to control the flow in the 

region under her contro l. As usual, to minimize the effects of these undesirable 

higher costs on his transport system, the shipper would play a bilevel linear 

programming game. 

• Disconnection A different modelling issue assumes that player Q network 

does not disconnect origin and destination. In this case, model (2) can no 

longer be derived from model (1). Hence the remaining of this work when 

player P plays first no longer holds. The three-stage model has to be faced and 

conditions for the existence of the optimal solution and methods to identify 

it have to be investigated. Finally, new algorithms to detect it have to be 

implemented. This extension would allow the shipper to partially or fully 

overcome the region controlled by the adverse entity and consider alternative 

routes which are completely under his control. In addition, different competing 

transport modalities between the same 0/D pairs may also be compared. 

• Competition At the strategie level, competition is often a major concern 

in the decision making process of any shipper. As we mentioned in Section 

3.2, some results on multi-level noncooperative games where several actors 

compete for taking portions of the link capacity over a network are available 

in the communication sector. U nfortunately, these models consider only a very 

simple network topology: a single origin and a single destination connected 

by parallel arcs. This basic structure is clearly unfit to depict transportation 

78 



environments. Indeed, the extension of this approach to a more general graph 

topology would provide an useful framework to be further exploited when 

modelling several actors in competition over the same network. 

• Minor issues More trivial extensions consider multiple origins an d/ or multi

ple destinations. Also the assumption of acyclic network may be easily disre

garded, provided that the appropriate algorithm to prevent positive cycles in 

the subgraph GQ is integrated. 

7.3 The Freight Traffic 

The situation UND had to face years ago when the Balkan war suddenly started 

gave us the stimulus to investigate the actions a shipper can take when he is not 

able to fully control all the arcs of network his goods go through. From the available 

data the network in Fig. 6.1 has been built and the Cycle Cancelling Algorithm has 

been test ed on this simple, but not trivial, real graph. However, the actual freight 

traffic system from Turkey to Europe could be investigated in more detail. 

As explained in the previous Chapter 6, all the data we referto are actual data 

and particular accuracy has been given to correctly define the average generalized 

costs and capacities of each are. Nevertheless some more refinement would be possi

ble provided more complete data sources are available. In this field, similar advances 

calibrating the generalized cost function of a modal choice model comparing sea, road 

and rail freight transportation in the Adriatic sea context (with particular emphasis 

on the Port of Trieste) are currently under study (Dall'Acqua, 2002). 

Relying on the different theoretical modelling issues introduced in the previous 

Section 7.2 to be further developed in the future, we might expand our view to 

capture several aspects of the whole UND freight traffic system. First, the real multi

origin and multi-destination network could be established. Second, all the different 

transportation modes used by UND vehicles could be considered simultaneously. In 

fact, by disregarding the disconnection property of GQ the actual competition among 
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road and seaborne paths can be represented. The interest in this line of research 

is also testified by some recent studies where a macra-economie analysis comparing 

the road and RO-RO transport in the Mediterranean (including the freight traffic 

from Turkey to Europe) is performed (Torbianelli, 2000). 

The comparison between the results obtained when performing the worst-case 

analysis and the actual system behavior is another important point to be further 

developed. However, difficulties arise because the freight traffic is continuously sub

ject to major variations. On the sea side, the number of weekly calls at the Port 

of Trieste raised in the last year from 11 to 14. It means that the seaborne link 

increased its capacity by about 30.000 vehicles affecting shipper's decision making 

process at the strategie level. On the road side, the past and present international 

politica! situation has currently strong influence at each hierarchical level. At the 

strategie level, war operations quickly moved through different neighboring regions 

(i.e., Bosnia, Kosovo, Macedonia etc.) thus modifying different times the capacity 

of the same are. This prevented the adverse entity to attain a steady state. At the 

lower levels, the highly variable variance of the time spent in each trip to cross the 

several country border gates has always been a major concern. This situation even 

worsened after September 11, 2001, attacks. In fact, stricter regulations have been 

enforced far customs and anti-terrorism inspections. At the time being, we are not 

in the position to predict whether they would significantly affect ( e.g., as a large 

annual variation of the amount of vehicles through some specific are) the network 

when considering its aggregate view. By contrast, the acquisition of a new RO-RO 

vessel (a shipper's strategie decision) has certainly much more impact on his whole 

transport system. Because of this high degree of uncertainty and dynamic evolu

tion of the environment wherein UND normally operates, stochastic and dynamic 

network models might be considered. 
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Chapter 8 

Conci usions 

Noncooperative games in their extensive form may be appropriate to support ship

per strategie decisions when the whole transportation network is not under his full 

control. In this context, a game between two players acting on the same road 

transportation network is considered. The first player aims at minimizing the trans

portation costs, whereas the second player aims at maximizing her profit (or, in 

generai, her utility) t ha t is proportional to the fl.ow passing through the arcs un

der her control. This framework may describe, as an example, the situation where 

restrictions are imposed by some alpine country on the number of trucks allowed 

to cross it by road each year. A different context involving the presence of a sec

ond agent on the shipper's network occurred when the International Transporters' 

Association (UND) of Turkey had to face when the war in the Balkans started. 

The war is considered as an hostile player or on adverse entity introducing major 

limitations on the link capacities. The situation motivates our investigation on net

work games when handling uncertainty in the analysis of traffi.c and transportation 

systems at the strategie level is a major concern. As highlighted in Chapter 3, we 

propose an approach which extends and merges together results from different con

texts, namely multi-actor sequential models, network game models and bilevellinear 

programming models. The games under study are eventually modelled in Chapter 

4 as bilevel linear programming formulations. In Chapter 5 we prove that the op-
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timal solution of the bilevellinear programming problem under concern is a Nash 

equilibrium point. Relying on the Negative Cycle Optimality Conditions, original 

theorems and properties identifying such Nash equilibria have been proved. This 

results allowed to define the Cycle Cancelling algorithm which is a heuristic algo

rithm detecting a local optimum only, i.e., un upper bound for the global optimum. 

In Chapter 6 the Cycle Cancelling algorithm has been tested on a simple network 

and its results have been compared with the outcome obtained by using an exact 

enumeration procedure. Since i t turns out that the percentage error of the heuristic 

algorithm is equal to 0,3 %, we may claim that its performances are certainly highly 

satisfactory, at least in this specific example. Even though some strict assumptions 

had to be introduced, the just mentioned graph has been built relying on actual and 

updated data related to road freight traffi.c from Thrkey to Western Europe. Hence 

it is given an estimate of the economie advantages the shipper may benefit when 

modelling the worst-case analysis as an adverse player and solving the game with 

bilevel linear programming. Different extensions of the models and the algorithm 

developed are described in Chapter 7 both from the theoretical and the application 

side. These advances would provide either faster local or global search algorithms 

either more complete models representing in deeper detail the actual system and 

the interactions among the actors involved. Hence a decision support system for the 

shipper's decision making process at the strategie level can be built and effectively 

used by freight transportation practitioners. 
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