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Notation 

- Starting from Chap. 2 natural units with n = l and c = l are used. 

- The Minkowski metric signature is (1, -l, -l, -l). 

- The Greek indices are spacetime indices running from O to 3. The ones 
at the beginning of the Greek alphabet like a, (3, r or <5label quantities 
referring to Minkowski spacetime while the others in the middle of the 
Greek alphabet like À, J.L, v or p label quantities referring to a generic 
curved spacetime. 

- The Latin indices at the beginning of the Latin alphabet like a, b or 
c are spinor indices running from l to 4. The Latin index i is a space 
index running from l to 3. Finally, the Latin indices at the end of the 
Latin alphabet like u or v are coordinate indices standing for x, y or 
z. 

- The index j embodies all the quantum numbers of a relativistic elec-
tron (positron) in the presence of a constant and uniform magnetic 
field in Minkowski spacetime. The index J embodies the correspond-
ing quantum numbers but in curved spacetime. Instead, the index J 
indicates a set of quantum numbers to be determined. 

- The sans serif letters like x or y embody the four generai coordinates 
of a spacetime fourpoint. 

- The subscript "t" refers to quantities concerning the physical situation 
in which the magnetic field is always directed along the z axis. 

- The subscript "!" refers to quantities concerning the physical situation 
in which the magnetic field lies in the y-z plane with a nonzero y 
component. 

- The subscripts "_l" and "Il" refer to quantities perpendicular and par-
allel to the magnetic field respectively. 

- The superscripts "(ann)", "(syn)" and "(dir)" refer to photon pro-
duction mechanisms and stand for "annihilation", "synchrotron" and 
"direct" respectively. 

iii 



iv Notation 

- The superscripts "lin" and "exp" referto the magnetic field time vari-
ation and stand for "linear" and "exponential" respectively. 

- The superscript "(R)" refers to quantities calculated in Rindler space-
time. 

- The primed classica! and quantum fields, the primed propagators and 
the primed S-matrix elements referto the physical situation in which 
the magnetic field is always directed along the z axis. 

- The capitai calligraphic letters like P or H referto one-particle electron 
and positron quantum operators. 

- The variant capitai calligraphic letters like !/ or .Ye refer to field 
density quantities. 

- The "Euler" font letters like A, F or e refer to quantities concerning 
the photon radiation field. 



Introduction and outline 

During the years Quantum Electrodynamics ( QED) has received a large 
amount of experimental confirmations and today it is considered the most 
reliable microscopic physical theory we have. It is enough to think about the 
excellent agreement between the predicted [l] an d the measured [ 2] anoma-
lous magnetic moment of the electron. The main subject of this thesis 
concerns a very interesting and fascinating branch of QED: Quantum Elec-
trodynamics in the presence of External Fields (QEDEF) [3, 4]. As the name 
itself suggests, QEDEF concerns those quantum electromagnetic processes 
happening when a classical (nonquantized) field is present. The external 
fields are typically electromagnetic fields and they have two n1ain general 
characteristics: 

l. they are produced by sources not belonging to the system under study 
and their spatiotemporal evolution is assigned; 

2. they are so intense that: 

2a. quantizing them would be useless; 
2b. trying to compute their effects by means of standard perturbative 

techniques would be in most cases conceptually wrong. 

Now, many processes studied in pure QED can also be analyzed in the 
presence of external fields such as particle scattering and so on. But there 
is a process that is typical of QEDEF: the production of particles from vac-
uum. The reason is understandable because pure QED describes a closed 
system whose energy is conserved and then particles can not be created from 
vacuum. Instead, in QEDEF just the external fields can supply the energy 
necessary to create electron-positron pairs or photons directly from vacuum. 
The seminal work about this subject is that by Schwinger [5] in which he 
shows that in the presence of a constant and uniform electric field, real pairs1 

can be produced directly from vacuum. The production probability results 
significantly different from zero only for electric field strengths much larger 
than Ecr = m2c3 /(ne)= 1.7 x 1016 V /cm where m and-e< O are the mass 

1 From now on, when it is not specified, it is understood that "pair" ("pairs") stands 
for "electron-positron pair" ( "electron-positron pairs"). 

v 



V l Introd uction an d outline 

and the charge of the electron respectively. This value of Eer represents a 
sort of benchmark over which the effects of an external electric field become 
important. Nevertheless, we wili see in the next Chapter that Eer is much 
larger than the electric fields that today can be produced in terrestriallab-
oratories and the experimental confirmations concerning QEDEF are less 
numerous than those concerning pure QED. 

The expression of Eer can be seen qualitatively as that of the electric 
field strength whose energy in a volume with typicallength of the order of 
the Compton length À = !ij(mc) is large enough to produce an electron and 
a positron at rest. By using the same energetic argument it can be seen that 
a magnetic field strength stronger than Ber = m2c3 /(fie) = 4.4 x 1013 gauss 
is capable to "break" the vacuum an d create a pair. 2 The value of Ber is also 
much larger than that of the strongest, steady magnetic field ever produced 
in a terrestriallaboratory which is of the order of 105 gauss [6]. Instead, we 
wili see in the next Chapter that there are various indirect evidences that 
around astrophysical compact objects (neutron stars, black holes) magnetic 
fields much stronger than Ber are present. Actualiy, this is stili not a good 
enough reason to start studying QED in the presence of such strong mag-
netic fields if an (a t least) indirect experimental effect of their presence is 
not at hand. Now, one of the most intriguing and mysterious astrophysical 
phenomena seems to be originated just around neutron stars or black holes 
surrounded by an accretion disk. I am referring to the so-calied Gamma-Ray 
Bursts ( GRBs) that are huge pulses of soft gamma-rays that our satellites 
register on average once a day. The exact GRBs production mechanism is 
stili not completely weli understood. Actualiy, foliowing the widely accepted 
fireball model of GRBs, the photons making a GRB are produced, through 
standard electromagnetic mechanisms such as synchrotron emission, by a 
"fireball" in turn made mostly of electrons, positrons and photons them-
selves. Nevertheless, it is not stili clear how the fireball itself is generateci. 
O n the other han d, as we will see in the next Chapter, i t seems almost sure 
that the fireball is produced near a neutron star or a black hole surrounded 
by an accretion disk and that the huge magnetic fields that are there play 
a fundamental role in this process. In this respect, trying to find a mi-
croscopic underlying mechanism responsible of the formation of the fireball 
represents for a theoretical physicist a very challenging reason to study those 
electromagnetic processes that can be primed in the presence of such strong 
magnetic fields. In fact, in this way, some generai experimental features of 
GRBs could be explained and interpreted. 

In this thesis I will focus in particular o n parti de prod uction processes 
in the presence of strong (i. e., much larger than Ber), uniform and slowly-

2It must be pointed out that, although from an energetic point of view pairs can be 
created in the presence of a constant and uniform magnetic field with strength larger than 
Ber, it is impossible, as Schwinger also showed in [5], from a dynamical point of view 
essentially because the Lorentz force does not do any work. 



Introduction and outline vii 

varying magnetic fields. The theoretical justifications of these assumptions 
about the structure of the magnetic fields considered in the present work 
will be given in the following Chapters that are organized as follows. Chap. 
l is divided into two independent parts: in the first one I briefly review some 
developments and theoretical predictions about the production of pairs in 
the presence of external electromagnetic fields; instead, in the second one 
I give a brief introduction about the phenomenological characteristics of 
GRBs and about the fireball model of GRBs. In Chap. 2 I just outline the 
following three "textbook" subjects: the motion of a relativistic charged par-
ticle in the presence of a constant and uniform magnetic field, the adiabatic 
perturbation theory in quantum mechanics and the quantum field theory in 
curved spacetime. Even if these subjects (a t least the first two) are well-
known I treat them for the sake of completeness because they represent the 
theoretical tools I have used to derive my own results. These last are pre-
sented in Chaps. 3-5. In particular, in Chap. 3 I study the production of 
an electron-positron pair from vacuum in the presence of a strong, uniform 
and slowly-varying magnetic field. In particular two different magnetic field 
time evolutions are considered. Since, asI have said, a possible application 
of these calculations concerns the mechanisms accounting for the prod uction 
of a GRB, in Chap. 4 I study some processes through that the electrons 
and the positrons already created in a strong, uniform and slowly-rotating 
magnetic field can produce photons. In particular, I calculate the energy 
spectra of photons produced through pair annihilation and as synchrotron 
radiation. Also, by using the so-called effective Lagrangean method I obtain 
the energy spectrum of the photons produced directly from vacuum in the 
presence of a strong, uniform and slowly-rotating magnetic field. Finally, in 
the astrophysical scenario I have just sketched, it is interesting to examine 
what the role of the compact object's gravitational field is. I devote the 
last Chapter to this subject by analyzing, in the context of quantum field 
theory in curved spacetime, how the presence of a weak and of a strong grav-
itational field modifies some results on the production of electron-positron 
pairs already obtained in Chap. 3. 
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Chapter l 

Physical background and 
motivations 

As I have sketched in the Introduction, despite the possible application to 
the study of GRBs, this work is principally theoretical. As a consequence, 
in this Chapter I want to firstly describe the scientific "landscape" where 
this work is included with particular reference to pair prod uction in the 
presence of strong electromagnetic fields (Sect. 1.1). Also, in arder to make 
the cited astrophysical application clear I give a brief description of the 
generai experimental features of GRBs, of the physical scenario where they 
are supposed to be originated and of the widely accepted fireball model of 
GRBs (Sect. 1.2). 

1.1 Pair production in the presence of strong elec-
tromagnetic fields: a short review 

This work will concern mainly the theoretical study of the production of 
pairs in the presence of a strong, uniform an d time-varying magneti c field in 
the framework of QEDEF. Then, it is worth giving a brief review about, in 
generai, the production of pairs in the presence of external electromagnetic 
fields. Actually, books [3, 4] and conferences [7] have been devoted to this 
subject and then my review will be unavoidably incomplete. 

As I have said in the Introduction, the possibility that real pairs can 
be produced from vacuum was first investigated by Schwinger in [5]. In 
particular, he discussed the pair prod uction process in the presence of an 
external constant and uniform electric field. The calculations are rather 
difficult but the production mechanism, sometimes called Schwinger mecha-
nism, is qualitatively easy to be understood. In fact, it is known that virtual 
pairs are spontaneously produced and then annihilated as "vacuum fluctu-
ations". The electron and the positron making a virtual pair "live" at a 
very short distance between each other of the arder of the Compton length 

l 
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À = 3.9 x 10-11 cm. Nevertheless, if the external electric field strength is 
larger than Ecr = 1.7 x 1016 V /cm, the associated electric potential distorts 
very much the attractive Coulomb potential between the electron and the 
positron forming the virtual pair (see Fig. 1.1). The form of the resulting 
total potential is such that the virtual electron and the virtual positron can 
be "separated" through the tunnel effect becoming real particles. The in-

o .---------------------------------------~ 

tunneling 
-20 
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e--e+ distance in unit of the Compton length 

Figure 1.1: Total potential in arbitrary units between the electron and the 
positron forming a virtual pair in the presence of an external strong, constant 
and uniform electric field. 

terpretation of the pair prod uction mechanism in terms of the tunnel effect 
is confirmed by the typically nonperturbative expression of the production 
probability. In fact, if the external field strength E is much larger than Ecr, 
i t results proportional to exp( -7r Ecr /E) [5]. The same previous qualita-
tive interpretation but also rigorous calculations show that the production 
of pairs from vacuum is impossible in the presence of a pure, constant and 
uniform magnetic field. In fact, unlike the electric force, the Lorentz force 
can not do the work necessary to "separate" the electron and the positron 
forming a virtual pair and to make them real particles. 

The extraordinarily high value of Ecr makes impossible to test in a ter-
restrial laboratory the pair production Schwinger mechanism. A further 
difficulty is represented by the fact that in the Schwinger formalism the 
electric field is assumed to be constant and uniform while from an experi-
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mental point of view it is easier to produce strong alternating electric fields 
(lasers). A wide literature has been devoted to the theoretical study of 
pair production in the presence of uniform, alternating fields. The first 
work was that by Brezin and Itzykson [8]. In that paper it is found that 
if no is the electric field rotational frequency then the pair production is 
significantly different from zero if the electric field strength E is such that 
E > mf20c/[esinh[nf20/(4mc2 )]]. Even using the X-ray lasers actually at 
our disposal, the effect is stili too tiny to be observed. In fact, the peak 
value of the electric field strength at the focus of an X-ray laser necessary 
to measure some effects of pair creation is of the arder of 1015 V /cm, that is 
five orders of magnitude larger than those of the now available X-ray lasers 
[9, 10]. 

Due to this unavoidable "inadequacy" of the experimental resources, var-
ious electromagnetic field configurations have been analyzed by theoretical 
physicists in arder to find the most efficient one from the point of view of 
particle production. For example, in [11, 12] the production of pairs in the 
presence of a uniform and time-dependent (but nonoscillating) electric field 
is considered. The authors use the effective Lagrangean method [similar to 
that used by Schwinger in [5]] to calculate approximatively the number of 
pairs per unit volume and unit time created from vacuum as twice the imagi-
nary part of the effective Lagrangean density of the system [13, 14]. Instead, 
in [15] the same technique is used to estimate numerically the production of 
electrons and positrons in the presence of electric and magnetic fields cou-
pled in various configurations: an alternating electric field superimposed to 
a uniform magnetic field or an alternating electric field superimposed to an 
also alternating magnetic field. Finally, in another class of papers the pos-
sible multiple pair production in the electromagnetic field of two colliding 
heavy ions is studied [16, 17] but till now the experimental evidence of this 
mechanism of particle production is inconclusive and controversia!. 

Finally, a different theoretical method has been used to predict, in gen-
erai, particle production in the presence of external time-dependent fields: 
the Bogoliubov transformation. In arder to describe the physical content of 
the Bogoliubov transformation, I assume, as usual in quantum field theory, 
to work in the Heisenberg picture. Now, when a time-dependent external 
field is present the second quantized number operators associated with a 
generic quantum field change nontrivially with time. It may happen that 
even if the time-independent state of the quantum field system is the vacuum 
state of the number operators calculated at t-+ -oo it is not the vacuum 
state of the number operators at t -+ oo. 1 In this case, one just concludes 
that while in the far past no particles were present, they are there in the 
far future and then that the external time-dependent field induced their 

1 It can be shown that these two classes of operators are connected by means of a linear 
transformation called Bogoliubov transformation. 
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production directly from vacuum. As it is evident from this qualitative de-
scription, the use of the Bogoliubov transformation technique is not limited 
to the study of electron-positron pairs prod uction in the presence of time-
dependent electromagnetic fields. In fact, it has also been used, for example, 
in [18, 19, 20, 21, 22, 23] to calculate the production rate of different kinds of 
particles in the presence of time-dependent cosmologica! gravitational fields. 

1.2 GRBs: a brief introduction 

In this Section I want to give a brief introduction concerning GRBs, their 
generai features and so on. The literature about GRBs is really endless but 
the prese n t introd uction results mostly from my reading of some nonspecial-
istic papers (24, 25, 26, 27] and some review papers [28, 29, 30, 31]. In the 
following I will not quote the previous references anymore but only other 
ones where I found specific information. 

1.2.1 Generai experimental characteristics of GRBs 

The first GRB was detected by chance on July 2, 1967 by a military satel-
lite watching for nuclear tests in space. The experimental data concerning 
that burst were published much later and, actually, the scientific community 
started studying systematically GRBs only after the launch of the Comp-
ton Gamma-Ray Observatory (CGRO) and its detector BATSE (Burst and 
Transient Experiment). BATSE made a crucial contribution in establishing 
the distance scale of GRBs. In fact, it detected GRBs from all directions 
in the sky with a completely isotropic distribution (see Fig. 1.2) strongly 
supporting the idea that GRBs are originated at cosmologica! ('"'"' 1028 cm) 
distances from us. 2 The cosmologica! origin of G RBs has tremendous conse-
quences about the total energy carried by them. In fact, the detected GRBs 
fluences range typically from 10-7 ergjcm2 to 10-4 erg/cm2 [30], then, as-
suming an isotropic emission, the total energy carried by a GRB is of the 
order of 1050 erg-1053 erg. For this reason, GRBs have been characterized 
as the brightest explosions in the Univers~ after Big Bang. 

Now, thousands of GRBs have been detected by high-energy astrophysics 
satellites and, as we will see in the next Paragraph, a feature that makes 
them hard to be understood is just their wide variety. For example, Fig. 
1.3 shows very different GRBs time profiles, i. e. the number of photons 
detected per unit time as a function of time. In this respect, GRBs typically 
last from 0.01 sto 100 sand are generally classified into two large categories: 
short bursts lasting less than 2 s and long bursts the others. We know very 

2 By contrast, the isotropic distribution of GRBs rules out the possibility that, as it 
was firstly believed, GRBs are produced in ,our galaxy because it is not spherical and we 
do not occupy a privileged position in it. 
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1707 BATSE Gamma-Ray Bursts 

+90 

-90 
Galact.ic Cocrdinates 

Figure 1.2: Spatial distribution in the sky of 1707 GRBs detected by BATSE. 

little about short bursts. In generai, their energy spectra are harder than 
those of the long GRBs and they are supposed to be originated nearer with 
respect to long bursts [32]. Instead, our knowledge about long bursts has 
been made deeper thanks to the discovery of their X-ray afterglows by means 
of the Italian-Dutch satellite Beppo-SAX. Actually, the data from Beppo-
SAX showed that long GRBs are followed by a multiwavelength "afterglow" 
made of X-ray photons, ultraviolet photons down to radio photons. On 
the one hand, the optical observations confirmed the cosmologica! origin of 
GRBs. On the other hand, the presence of iron lines in the afterglows was 
the first indication of a connection, t ha t has become stronger an d stronger, 
between GRBs and supernovae explosions. In fact, it is known that during 
these explosions large amount of iron atoms are synthesized and ejected. 

I want to conclude this Paragraph by quoting three other generai features 
of GRBs that give quite striking conditions mostly on the mechanism(s) 
responsible of their production: 

• the energy spectrum of GRBs is not thermal; 

• the time variability of the GRBs signals is observed down to time scales 
of less than 10 ms (see Fig. 1.3); 

• the prompt gamma-ray emission of many GRBs shows a high linear 
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Figure 1.3: Various GRBs time profiles. 

polarization degree [33]. 

Concerning the first point, Fig. 1.4 shows two typical GRBs energy spectra. 
In generai, called n( w) the number of photons per unit area an d uni t time 
as a function of the photon energy w (indicated as E in Fig. 1.4), a typical 
experimental GRB energy spectrum is well fitted by the following piecewise 
function 

dn(w) ~w-a exp [- ((3- a)wl 
--ex Wb 

dw -~ wt;a ( ~) exp [-((3- a)] 
(1.2.1) 

if W> Wb 

with a ~ l an d (3 ~ 2-3 an d with Wb a break energy. Eq. ( 1.2.1) represents 
essentially a double power-law smoothly joined at w = Wb by a decreas-
ing exponential. The break energies Wb typically lie between 0.1 Me V an d 
0.3 Me V, even if bursts with Wb >l MeV have been detected [34, 35]. 

1.2.2 The fireball model of GRBs 

In this Paragraph I want to show how the previous experimental evidences 
led astrophysicists to work out the so-called fireball model [36, 37] that is 
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Figure 1.4: Two typical GRBs energy spectra. 

the most widely accepted model of long GRBs.3 

In the fireball model the photons forming a GRB are thought to be 
emitted by a "fireball", a plasma made essentially of electrons,. positrons and 
photons, that expands high relativistically [40] .4 In generai, a di ree t emission 
of the photons forming a GRB would be inconsistent with the experimental 
evidence about the nonthermal spectrum of GRBs. In fact, as wehave seen, 
during a burst 1050 erg-1053 erg are released on average in less than 100 s. 
Also, the fact that GRBs show in the soft-gamma region variabilities at time 
scales of the order of l ms implies, by using the causality limit, that their 
source should have a linear length of the order of l ms x c= 3.0 x 107 cm. 
In these extreme conditions, even if initially only photons were prod uced 
then their energy (~ l MeV) and their density would be high enough to 
create electron-positron pairs through the reaction 'Y'Y --+ e-e+. In turn, the 
strong electromagnetic interactions among the electrons, the positrons and 
the photons would allow these last to escape only after so much time that 
they would thermalize. 

3 Actually, due to the great variety of GRBs, many models of GRBs have been pro-
posed during the years describing GRBs as jets from pulsars [38] or as bursts emitted by 
cannonballs in turn originated during supernovae explosions [39] etc .... 

4 0ne of the strength points of the fireball model is its almost complete independence 
from the nature of the central engine that produces the fireball (see Sect. 1.2.3) and from 
the mechanism(s) giving rise to the fireball itself. 
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As I have only mentioned at the beginning of this Paragraph, the fire-
bali model is intended to describe only long GRBs. In fact, the feature that 
mostly has contributed to its success is just the prediction of the existence of 
the afterglow. Actually, the fireball model gives quite naturally a mechanism 
for producing the true burst and the afterglow (see Fig. 1.5). In generai, 

Figure 1.5: Schematic representation of the mechanisms producing a long 
GRB and its afterglow in the frarnework of the fireball model. The left part 
of the Figure and the inset refer to two possible progenitors of the fireball 
that are discussed in Par. 1.2.3. 

in this model a GRB and its afterglow are produced at the expense of the 
kinetic energy of the fireball. In particular, the true burst is produced as 
a consequence of the intemal shocks among different layers of the fireball 
travelling at different speeds [41]. Of course, although these shocks may 
last hours, the resulting burst can last only few seconds because the fire-
baH expands high relativistically with a Lorentz factor also more than 100. 
Also, the fact that the electrons and the positrons in the fireball are very 
energetic explains why during a burst photons can be emitted with energies 
of the order of l GeV or more and why the time profile of a burst can also 
show structures at the millisecond scale. Instead, the afterglow of a GRB is 
produced as a consequence of the shocks between the extemal layer of the 
fireball and the surrounding medium [42]. The two mechanisms producing 



Chapter l 9 

the true burst and the afterglow are independent from each other but, in 
generai, the internai shocks and the expansion slow down the fireball before 
it encounters the interstellar medium. In this way the photons forming the 
afterglow result, in generai, to be less energetic than those forming the true 
burst an d the afterglow itself lasts much longer t han the true burst. 5 

If we want to go a bit more deeply into the electromagnetic processes re-
sponsible of the production of the photons forming a GRB and its afterglow 
we have to take into account the indications suggested by the experimental 
data (see the previous Paragraph). Firstly, asI have just mentioned before, 
the photons forming a GRB can not be those present in the fireball because 
their energetic spectrum would be thermal. Moreover, all the experimental 
indications support the idea that the main mechanisms responsible of the 
production of the photons forming a GRB are the inverse Compton effect 
and, mostly, the synchrotron emission. The inverse Compton effect, that 
is the scattering between an energetic electron (positron) an d a soft p ho-
ton resulting in a less energetic electron (positron) an d a harder photon, is 
important in explaining the high-energy ( of the order of GeV) part of the 
photon spectrum of a GRB [43]. Instead, the photons forming the other less 
energetic parts of GRBs photon spectra are thought to be produced as syn-
chrotron radiation by the shock-accelerateci electrons and positrons forming 
the fireball. Firstly, this photon production mechanism explains the pres-
ence of the break energy Wb in the energy spectra (see Fig. 1.4) and the 
power-law behaviour below wb [see Eq. (1.2.1)]. Most important, the recent 
discovery of the highly linear polarization degree [TI = ( 80 ± 20) %] of the 
gamma-ray emission of the GRB detected on December, 6 2002 (33] strongly 
supports the idea that those photons are emitted through synchrotron radi-
ation just because synchrotron radiation is theoretically known to be high 
linearly polarized [44, 45]. Obviously, in order that synchrotron radiation 
can be emitted, a magnetic field must be present in the emission region. 
The high polarization degree itself suggests that the magnetic field in the 
emission region should be nearly uniform and strong enough to "order" the 
motion of the emitting particles in the fireball [33, 46]. This is in turn a 
clear indication that the true GRB is generateci in regions where the mag-
netic field is that produced by a macroscopic object that, as we will see in 
the next Paragraph, is identified with the centrai engine that powers the fire-
hall [47]. By contrast, the polarization degree of the afterglow photons has 
been measured to be of the order of 10 %. This much lower value indicates 
that the afterglow is produced in regions where the magnetic field can also 
have a "turbulent" spatial distribution and can be produced by the shock-
accelerateci electrons and positrons themselves in the fireball [48, 49, 50]. 

5 Nevertheless, some GRBs have been detected having an afterglow "harder" than the 
true burst. 
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1.2.3 Centrai engine 

As I have said before, the fireball model is quite independent from the nature 
of the source, the centrai engine that primes the formation of the fireball. 
Obviously, there is no direct evidence of what the centrai engine is and, 
for this reason, many candidates have been proposed [51]. In any case, 
the fact that during a GRB a so large amount of energy is ejected in a so 
relatively short time leads to believe that their sources should be systems 
storing very much energy and that a sudden, explosive event should be 
at the origin of the burst. Two kinds of astrophysical systems have been 
proposed as the possible progenitors powering GRBs (see Fig. 1.5): on the 
o ne han d, binary merging systems such as neutro n star/ neutron star systems 
or neutron star/black hole systems [52, 40] and, on the other hand, very 
massi ve (more t han 20 solar masses) stars with a collapsing core, called failed 
supernovae or collapsars [53]. 6 The result of the merging in the first case an d 
of the collapse in the second case is the same: a massive rotating black hole 
surrounded by an accretion disk.7 Clearly, the observation that many GRBs 
have been localized in star forming regions is an evidence against the first 
kind of progenitors. In fact, the merging of two compact objects comes even 
billions of years later than their formation, then the composite system has 
enough time to drift far from its birth location. Also, the fact that iron (but 
also silicon, sulfur and so on) lines have been detected in GRBs afterglows 
corroborates the hypothesis of the supernova explosion as the "dramatic" 
event producing the fireball because during supernovae explosions such kinds 
of atoms are synthesized and ejected into the interstellar medium. Finally, 
there are now also many direct evidences that GRBs are detected where also 
a supernova is "seen" [55, 56, 57, 58]. It is worth noting that all the previous 
indications against the binary-merging model are obtained from afterglow 
measurements. For this reason, since no afterglows have been so far detected 
for short GRBs, the hypothesis that the binary-merging model can describe 
the formation of short GRBs has been carried out [59, 60] (since, from now 
on, I will not deal with short GRBs anymore but only with the long ones, I 
will omit the adjective "long" that, actually, will be understood). 

It is clear that a massive rotating black hole surrounded by an accretion 
disk is a huge container of rotational and gravitational energy. But, how this 
energy can be "extracted" from the black hole-accretion disk system to form 
a fireball and then a GRB? Also concerning this subject, there are no direct 

6The adjective "failed" refers to the fact that initially it was supposed that such su-
pernovae explosions did not eject outside the envelope of the star. 

7 A variant of the collapsar model has been proposed in [54]. In this model, called 
supmnova model, the supernova explosion gives rise to a supermassive, rapidly rotating 
neutron star that, in turn, collapses producing a black hole and the fireball. With respect 
to the collapsar model, in the supranova model the fireball is generated much later than 
the supernova explosion (approximatively a week later) in a "cleaner" environment poor 
of heavy baryons. In this way, the energy transfer to the GRB results much more efficient. 
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observations and many extraction mechanisms have been proposed. I quote, 
for example, the possibility that the electric fields around charged black holes 
"break" the vacuum producing large amounts of pairs [61]. Another mech-
anism proposed in the framework of the collapsar model involves the anni-
hilation into electron-positron pairs of the numerous neutrino-antineutrino 
pairs that are produced during the supernova explosion but quantitative es-
timates show this mechanism is not efficient enough. Another popular mech-
anism that has been invoked to explain the formation of the fireball is the 
Blandford-Znajek mechanism [62, 63, 64]. This is a very complicated mech-
anism (65] but it essentially works as a dynamo that transforms rotational 
energy into electromagnetic energy. 8 N ow, as in a dynamo, a magnetic field 
is necessary in order that this transformation can happen. In addition, in the 
Blandford-Znajek mechanism a huge, overcritic (>>Ber= 4.4 x 1013 gauss) 
magnetic field is needed. In fact, the energy extraction rate is proportional 
to the square of the magnetic field strength and theoretical calculations es-
timate that in order to extract 1053 erg in less than 1000 s, magnetic field 
strengths of the order of 1015 gauss are needed (63]. Moreover, the possible 
presence of such strong magnetic field around massive rotating black holes 
surrounded by an accretion disk is also confirmed by numerica! simulations 
[see [60] and Ref. [9] in [63]]. In this respect, I want to mention two other 
models proposed in [66] and in [67, 68] where just the magnetic energy as-
sociated with such strong magnetic fields is "directly" transformed to power 
the fireball. In these models the centrai engines of GRBs are ultramagne-
tized rapidly rotating neutron stars called magnetars that, in fact, are able 
to produce dipole magnetic fields up to 1015 gauss [69, 70, 71]. In particu-
lar, in [66] the magnetic energy release to the fireball is supposed to happen 
during the formation of the magnetar as a consequence of the collapse of a 
white dwarf, while in [67, 68] it is supposed to happen during the collapse 
of the magnetar into a black hole. 

As a conclusion of this Paragraph an d of the previous o ne, I want to stress 
the fundamental role that the presence of strong magnetic fields around the 
central engine has in the production of a GRB: 

• it is necessary to explain the high linear polarization degree of the 
GRBs gamma-ray spectrum; 

• it is invoked to account for the energy "extraction" from the centrai 
engine to power a GRB or, even, to account for the energy itself to 
power a GRB. 

I have stressed the importance and the role of such strong magnetic fields 
because, as we will see in the following Chapters, their existence around 

8 In the black hole-accretion disk system also a large amount of gravitational bind-
ing energy is converted into electromagnetic energy by means of the Blandford-Znajek 
mechanism. 
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astrophysical compact objects represents one of the fundamental hypotheses 
of this work and its most important experimental counterpart. In fact, I will 
perform all the calculations by assuming to deal with overcritic magnetic 
fields and having in mind the astrophysical scenario I have just described. 



Chapter 2 

Theoretical tools 

In this Chapter I want to resume the theoretical background I needed to 
obtain the n1ain results of the thesis. The subjects can be found in many 
textbooks and they are also, unavoidably, very different from each other. 
Nevertheless, the goal of the Chapter is to give the theoretical tools to 
derive the final results an d, also, to fix the notation t ha t will used in the 
rest of the thesis. 

The Chapter is divided into three Sections. In the first one I quote 
the main results about the motion of a charged relativistic particle in the 
presence of a constant and uniform magnetic field: I treat both the case of 
a classica! and of a quantum particle. In the second Section I discuss about 
the effects and the transitions induced on a quantum system by an adiabatic 
perturbation. Finally, the third Section is devoted to a brief introduction to 
quantum field theory in curved spacetime with particular attention to the 
generai covariant formalism to deal with a spinor field in the presence of a 
classica! background gravitational field. 

2.1 Motion of a charged relativistic particle in the 
presence of a constant and uniform magnetic 
fie l d 

The problem of a charged relativistic particle in the presence of a constant 
and uniform magnetic field can be solved exactly both at a classica! and at a 
quantum level. Since this physical system is discussed in many textbooks I 
limit myself to a quotation of the results I will use in the following Chapters. 
A rigorous derivation of these results can be found in [72, 73] for what it 
concerns the classica! case and in [73, 7 4] for what it concerns the quantum 
case. 

As usual, I choose the reference system, whose coordinates are indicated 
as x, y an d z, in such a way the magnetic field lies in the positive z direction 

13 
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that is 

B'= G) (2.1.1) 

with B > O (I use the primed notation for later convenience). For definite-
ness, the charged particle is assumed to be an electron with rest mass m 
and electric charge -e < O. Finally, natural units with !t = l and c = l are 
used throughout. 

2.1.1 Classica! mechanics 

From a classica! point of view, i t is well known that the electron has a 
constant z component Vz of the velocity while it rotates uniformly andanti-
clockwise in the x-y plane. The resulting trajectory is, in generai, an helix 
with the axis parallel to the z axis (see Fig. 2.1). The axis of the helix 
intersects the x-y plane at a point Q whose nonzero coordinates have to be 
given as initial conditions and are indicated in Fig. 2.1 as x0 and Yo· In 
this way the square distance R~y of the axis of the helix from the origin is 
given by R;y = x5 + Y5 and it is a constant of motion. Since the Lorentz 
force does not do any work, the energy of the electron is also a constant of 
motion. Instead, the conservation of the z component 

lz = XPy- YPx (2.1.2) 

of the electron angular momentum depends on the gauge one chooses for 
the vector potential A' ( r) corresponding to the magnetic field B' ( the scalar 
potential can be assumed to vanish).l In fact, if Vx and Vy are the x and 
y components of the electron velocity, the momenta Px and Py appearing in 
Eq. (2.1.2) are defined as 

Px = mvx- eA~(r), 

Py = mvy- eA~(r) 

(2.1.3a) 
(2.1.3b) 

and, in generai, lz is not conserved. Moreover, it can easily be shown that 
if one chooses the so-called "symmetric" gauge in which 

l B (-y) A'(r)=-2(rxB')=2" ~ , (2.1.4) 

then lz is also a constant of motion. 

1This is not surprising because lz is not in the present problema true physical quantity. 
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y 

x 

Figure 2.1: Classica! trajectory of an electron in the presence of a constant 
and uniform magnetic field directed along the positive z axis. 

2.1.2 Quantum mechanics 

The quantum description of the motion of a relativistic electron in the pres-
ence of the magnetic field B' is very different from the classica! one and it 
depends on the complete set of commuting observables one chooses in the 
Hilbert space of the system. Now, the Hamiltonian of the system is, obvi-
ously, a conserved quantity and, in the symmetric gauge, it is given by the 
Dirac Hamiltonian 

H'= a· [1' + eA'(r)] +{3m (2.1.5) 

where 1' = -i8 is the linear momentum vector operator and a and {3 are 
the 4 x 4 Dirac matrices defined by the relations 

u = x,y,z, (2.1.6a) 
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u,v = x,y,z and u =f=. v (2.1.6b) 

where I is the 4 x 4 unit matrix and the braces indicate the anticommutator. 
In particular, I choose the matrices a and f3 in the Dirac representation 

0: = ( (T~2) q(2)) 
o ' f3= c(2) 

o ~~(2)) (2.1.7) 

where J(2) and u<2) with 

(2J = (o 1) 
ax l O ' ,-(2) = (o y . z ~i), ,-(2) = c z o ~l) (2.1.8) 

are the 2 x 2 unit and Pauli matrices respectively. 
We have seen before that in classica! mechanics the z component of the 

orbital angular momentum is a conserved quantity in the symmetric gauge. 
In quantum mechanics this in not true because the electron spin has to be 
taken into account. In fact, the z component of the electron total angular 
momentum defined as 

(2.1.9) 

with 

( 

(2) az 
o (2.1.10) 

is, actually, a constant of motion in the symmetric gauge. 2 In order to 
check that [7t', 3}1

/
2

)] =O one only needs the well-known commutator rules 
among the operators r and P: 

[u, Pv] = ic5u,v 
[u, v] = [Pu, Pv] =O 

and the anticommutator rules (2.1.6). 

u,v = x,y,z, 
u,v=x,y,z 

(2.l.lla) 
(2.l.llb) 

By observing from Eqs. (2.1.5), (2.1.4) and (2.1.9) that both 7t' and 
3}1

/
2

) do not depend on the z coordinate, one realizes that the commuta-
tors [Pz, 1t'] and [Pz, 3}1

/
2

)] also vanish. Now, since a relativistic electron 
has also an internai degree of freedom connected with its spin, the three 
operators 1t', 3}1

/
2

) and Pz are not enough to build up a complete set of 
commuting observables and then to describe in a quantum complete way 
the motion of the electron. Instead, another operator has to be added and 
a good candidate is represented by the quantum operator corresponding to 
the quantity R;y = x5 + Y5 that is, as we have seen, a constant of motion 

2In the future there will be no possibility of confusion between 2 x 2 and 4 x 4 matrices 
and I will omit the superscript "(2)" from the 2 x 2 unit and Pauli matrices. 
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in classica! mechanics. In fact, it can be shown that the operators corre-
sponding to x0 and y0 (t ha t will be indicated with the same symbols) can 
be written in terms of the fundamental dynamical operators r and P as 

x Py 
xo = 2- eB' 

Y Px 
Yo = 2 + eB 

(2.1.12a) 

(2.1.12b) 

and, by using these equations and the commutators (2.1.11), it is not difficult 
to show that the operator 

R2 = ( ~ - p y ) 2 ( y_ p x ) 2 
xy 2 eB + 2 + eB (2.1.13) 

commutes both with 7-l' and with JJ112
). Finally, since Riy does not de-

pend on z then [Pz, Riy] = O and I can conclude that the operator set 
S' = {1-l', JJ112

), Pz, Riy} is a complete set of commuting observables in 
the Hilbert space of the system "relativistic electron in the presence of the 
magnetic field B'" . 

By concluding, I want to give here an alternative expression of the op-
erator Yo that will be useful in Chap. 5. In fact, from Eqs. (2.1.12) and 
(2.1.11) it can easily be shown that 

'l 
[xo,Yo] = eB (2.1.14) 

in such a way in the representation in which x0 is simply a multiplicative 
operator the operator Yo can be written as 

i 
Yo =- eBBxo· (2.1.15) 

Electron and positron modes 

Once the complete set of commuting observables S' has been determined, the 
next task is to find the orthonormal basis of the Hilbert space built up by the 
common eigenstates or "modes" of S'. It is well known that in doing that in 
the relativistic domain one has to face the problem of the appearance of the 
negative-energy modes. This problem is solved through the so-called second 
quantization procedure that gives the possibility to interpret the pathological 
negative-energy modes as positive-energy antiparticle (positron) modes. The 
subject is well known and, for this reason, I will deal here directly with 
electron and positron modes without introducing the negative-energy modes, 
the charge-conjugation operator and so on. 

If the symbol "j" embodies all the needed quantum numbers, the electron 
an d the positron modes can be indicated as uj ( r) an d vj ( r) respectively an d 
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they are, from a mathematical point of view, fourdimensional spinors. N ow, 
i t can be shown t ha t four quantum numbers n d, k, a an d n 9 ha ve to be 
introduced and that they can assume the following values: 

nd,ng =O, 1, ... , 
k = any real number, 
a= ±l. 

(2.1.16a) 
(2.1.16b) 
(2.1.16c) 

The physical meaning of these quantum numbers can be understood by 
looking a t the eigenvalue equations t ha t the spinors uj ( r) an d vj ( r) satisfy: 

an d 

'1...11 l l 
l t Uj = WjUj, 

Pzuj = kuj, 
q(l/2) u1

· = (nd - n + ~) U 1
· vz J g 2 J' 

R2 l - 2ng +l l 
xyuj- eB uj 

In these equations I introduced. the energies 

Wj = vfm2 + k2 + eB(2nd +l+ a), 

Wj = Jm2 + k2 + eB(2n9 + 1- a) 

(2.1.17a) 

(2.1.17b) 

(2.1.17c) 

(2.1.17d) 

(2.1.18a) 

(2.1.18b) 

(2.1.18c) 

(2.1.18d) 

(2.1.19a) 

(2.1.19b) 

that are called electron an d positron Landau levels respectively. 3 I point 
out that the electron (positron) Landau levels do not depend on n 9 (nd). 4 

Now, from Eqs. (2.1.17b), (2.1.17c), (2.1.18b) and (2.1.18c) one realizes 
that k ( -k) and a (-a) are the linear momentum and the polarization of 

3I mention the fact that even if I will work in the strong magnetic field regime in which 
B/ Ber >> l, it can be shown that the radiative corrections to the electron and positron 
Landau levels are logarithmic in the ratio B /Ber [75] and then t ha t they can be safely 
neglected. 

4The electron (positron) Landau levels have a further kind of degeneration, in fact, 
if l+ = {nd, k, +l, n9} and J- = {nd +l, k, -l, n9} 0+ = {nd, k, +l, n9 +l} and 3- = 
{ nd, k, -l, n9}) then w j+ = Wj _ (w h = w3 _ ) . I will ha ve to take into account this further 
degeneration in Chap. 5. 
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the electron (positron) along the magneti c field or, in other words, the lon-
gitudinallinear momentum and the longitudinal polarization of the electron 
(positron). Instead, Eqs. (2.1.17c), (2.1.17d), (2.1.18c) and (2.1.18d) show 
that the quantum numbers nd and ng are connected with the transverse 
motion of the electron and of the positron that is with the motion of the 
electron an d of the positron in the p lane perpendicular to B'. It is worth 
giving here some details on how the quantum numbers nd and n 9 appear 
in the electron eigenvalue equations (2.1.17a), (2.1.17c) and (2.1.17d) [their 
appearance in the corresponding positron eigenvalue equations (2.1.18a), 
(2.1.18c) and (2.1.18d) can be understood in a completely analogous way]. 
The essential point is that in order to solve these equations one introduces 
the operators ad, a~ and a9 , a~ defined as 

(2.1.20a) 

(2.1.20b) 

(2.1.20c) 

(2.1.20d) 

By means of these definitions the transverse position and momentum oper-
ators x, y, Px and Py can be written as 

(2.1.21a) 

(2.1.21b) 

(2.1.21c) 

(2.1.21d) 

By performing these substitutions o n the operators H', :1}1
/

2
) an d R'?cy, o ne 

sees that 'H', :rl1
/

2
) and R'?cy themselves depend on ad, a9 , a~ and a~ only 

through the quadratic operators Nd = a~ad and N 9 = a~a9 . Now, starting 
from Eqs. (2.1.20) and from the commutators (2.1.11) it can be seen that 

[a9 , a~] =[ad, a~]= l, 

[a9 , ad] = [a9 , a~] = O 

(2.1.22a) 

(2.1.22b) 
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and then that ad, a~ and a9, a~ can be interpreted as two independent 
pairs of ladder operators. The corresponding operators Nd and N9 can be 
interpreted consequently as number operators and their eigenvalues are just 
the previously introduced nonnegative integers numbers nd and n 9. 

I want to discuss now the structure of the electron and positron modes 
uj ( r) an d vj ( r) an d their orthonorn1alization relations. By solving step by 
step Eqs. (2.1.17) and (2.1.18) one finds that uj(r) and vj(r) are given by 

(2.1.23a) 

(2.1.23b) 

In these expressions I introduced the operator V' and the two twodimensional 
spinors cpj ( r) an d xj ( r). O n the one han d, the operator V' is defined as 

V' = u · [P + e A' ( r) J = u · [P - ~ ( r x B') J (2.1.24) 

and, by substituting the expressions (2.1.21), it can written as 

(2.1.25) 

with a-± = (a-x ± io-y) /2. On the other han d, the twodimensional spinors 
cpj(r) and xj(r) are given by 

'() , 1 ( )exp(ikz) 
'Pj r = fc/)nd,ng x, Y y'L"; ' (2.1.26a) 

'·( ) = !' B' ( ) exp( -ikz) XJ r -u ng,nd x, y y'L"; (2.1.26b) 

where 

(2.1.27) 

and where the scalar functions 

l (eB)l2+1 . b [ eB(x2+y2)] - - (x- zy) exp -------
n~! 2 4 

(2.1.28) 
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depend only on the coordinates x and y [in this equation the operators a~ 
and a~ are supposed to be expressed as in Eqs. (2.1.20b) and (2.1.20d)). 

In Eqs. (2.1.26) I also introduced the symbol Lz which is the length 
of the quantization volume in the z direction. In fact, in the course of 
the calculations it is easier to deal with normalizable electron and positron 
modes. To do this, I assume the whole space to be confined between the 
two planes z = -Lz/2 and z = Lz/2 and the modesto satisfy the periodic 
boundary conditions 

uj(x, y, -Lz/2) = uj(x, y, Lz/2), 

vj(x, y, -Lz/2) = vj(x, y, Lz/2). 

(2.1.29a) 

(2.1.29b) 

In this way, the longitudinal momentum k assumes only the discrete values5 

k = ± 27rl 
Lz 

e= o, 1 ... (2.1.30) 

and only in the final results the continuum limit Lz ----* oo is performed. 
By using the boundary conditions (2.1.29) it can be shown that the twodi-
mensional spinors rpj ( r) an d xj ( r) satisfy the following orthonormalization 
relations 

(2.1.31) 

where 81· 1·, = 8nd n' 8k k'8u u'Òn n' and where the integrals on z are intended 
' ' d ' ' g, g 

to be performed from -Lz/2 to Lz/2. Analogously, ifwe calculate the square 
of the operator V' as given in Eq. (2.1.25) we have 

V'2 = 2eB [Nd(a_a+ + a+a-) + a+a-] + P'1 = eB (2Nd+ I+ az)+ P'1, 
(2.1.32) 

and then, from the expressions (2.1.19) of the electron and positron Landau 
levels, we obtain 

J 't ( ) V' V' , ( ) w i - m drrp1. r rp1., r = Òj,j', 
Wj +mwj' +m Wj +m 

(2.1.33a) 

J V I V' -,t 1 Wj- m drx1· (r) _ _ x1·,(r) = _ Òj,j'· 
Wj + m Wj' + m Wj + m 

(2.1.33b) 

Finally, from these equations and from Eqs. (2.1.31) and (2.1.23) the or-
thonormalization relations 

J dru?(r)uj,(r) = J drvj(r)vj,(r) = oj,j', 

j dru~t ( r) vj, ( r) = O 

can be immediately found. 
5 For notational sirnplicity, I do not indicate the dependence of k on R.. 

(2.1.34a) 

(2.1.34b) 
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Transverse ground states 

By looking at the Landau levels (2.1.19), one sees that there is a class of 
electron (positron) states characterized by the quantum numbers n d = O 
and rJ = -l ( n9 = O and rJ = +l) whose energies do not depend on the 
magneti c fie l d strength B. From a physical point of view, w hen the electron 
or the positron is in one of these states the energy associated with the 
interaction of the particle spin with the magnetic field compensates for the 
energy associated to the particle transverse rotational motion. These states 
will play a fundamental role in this work and they will be called Transverse 
Ground States (TGSs) to distinguish them from the other ones that will be 
generically indicated as excited Landau levels. In fact, asI have said at the 
end of the previous Chapter, I will deal mostly with pair production in the 
presence of strong magnetic fields such that B /Ber >> l. In this regime a 
TGS characterized by a given value k of the longitudinal linear momentum 
has an energy much smaller than that of the other excited Landau levels with 
the same k. In this respect, it is intuitively understandable that if there is 
no any other dynamical constraint the electrons and the positrons are more 
likely to be produced in TGSs than in other states. For this reason, it is 
worth giving here the explicit expression of the electron and positron TGSs. 
In order to simplify the notation, I will label them only by two indices n 
an d k (sin ce there is no possibility of confusion I o mi t the indices "d" an d 
"g" on nd and n 9 ) that is [see Eqs. (2.1.23) and (2.1.26)] 

1 ( ) 1 ( ) J Ck +m un,k r = uo,k,-l,n r = 2Ek 

1 ( ) 1 ( ) J "k +m vn,k r = vn,k,+l,O r = 2sk 

o 
l 
o 
k 

o 
k 

sk+m 
o 
l 

where [see the second equality in Eq. (2.1.28)] 

()1 ( ) exp( ikz) 
nx,y vf[:; ' 

(2.1.35a) 

()1 ( ) exp( -ikz) 
n x,y vf[:; 

(2.1.35b) 

1 1 l (eB)n+l . n [ eB 2 2)] Bn(x, y) =()n o(x, y) = - - (x- zy) exp --(x + y 
' 1rn! 2 4 

(2.1.36) 
and where 

C:k = Wo k -l n = Wn k +l o = V m2 + k 2 
' ' ' ' ' ' 

(2.1.37) 
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are the energies of the TGSs that have the same expression for the electrons 
and the positrons. Another feature of the TGSs that it is worth stressing 
is that they are all eigenstates of the operator az with the same eigenvalue 
-l. I will show in the next Chapter how this feature will give the possibility 
to state some very important selection rules concerning the pair prod uction 
process from vacuum in the presence of a strong, uniform and slowly-varying 
magnetic field. 

Rotated magnetic field 

All the previous results and equations are valid when the magnetic field is 
given by Eq. (2.1.1) that is when it lies on the positive z direction. Actually, 
I will also deal with a magnetic field B that, more generally, lies on the y-z 
plane that is 

with 

B = (;y) = B (si~ t?) 
Bz COS t? 

B= JB~+B'f, 
B t an t? = _]J_. 
Bz 

(2.1.38) 

(2.1.39a) 

(2.1.39b) 

The magnetic fields B and B' have been assumed to have the same strength 
in order to exploit the results obtained in the previous Paragraphs. In fact, 
the magnetic field B can be obtained from B' by rotating the sources of B' 
clockwise around the x axis by an angle t?. For this reason, by introducing 
the rotation unitary operator 

(2.1.40) 

with :1~ 1/2) = yPz-zPy+ax/2 the x component ofthe electron total angular 
momentum operator, some assertions can be immediately stated: 

• a complete set of commuting observables S in the Hilbert space of the 
system "relativistic electron in the presence of the magnetic field B" 
is built up by 

l. the Hamiltonian 

1t = R~1/2H(tJ)1t'R~1 /2)(tJ) =o:. ['P+ eA(r)] + j3m (2.1.41) 

with 
l A(r) = - 2(r x B) (2.1.42) 

the vector potential in the symmetric gauge corresponding to the 
magneti c fie l d B, 
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2. the longitudinal (with respect to B) linear momentum 

3. the longitudinal total angular momentum 

4. the square transverse ( with respect to B) distance 

• the spinors 

Uj(r) = R11/ 2)t(t9)uj(r), 
Vj(r) = R11/ 2)t(t9)vj(r) 

(2.1.43) 

(2.1.44) 

(2.1.45) 

(2.1.46a) 

(2.1.46b) 

build up the common eigenstates of the operators in S and are an 
orthonormal basis of the Hilbert space of the system; 

• the spinors uj(r) and vj(r) satisfy the eigenvalue equations 

an d 

'J-luj = WjUj, 

PlluJ = kuj, 

(1/2) ( a) Jli Uj = nd - n 9 + 2 Uj, 

2 2n9 +l 
R1_ Uj = eB Uj, 

1-lvj = -WjVj, 

PIIUj = -kVj' 

(1/2) _ ( a) Jli Vj-- nd-n9 +"2 Vj, 

2 2nd+ l 
R 1_ Vj = eB Vj, 

and the orthonormalization relations 

J druj(r)uj'(r) = J drvJ(r)vJ'(r) = Òj,j', 

j druJ(r)vF(r) =O. 

(2.1.47a) 
(2.1.47b) 

(2.1.47c) 

(2.1.47d) 

(2.1.48a) 
(2.1.48b) 

(2.1.48c) 

(2.1.48d) 

(2.1.49a) 

(2.1.49b) 
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2.2 Adiabatic perturbation theory 

The adiabatic perturbation theory concerns the effects induced on a physi-
cal system by an external perturbation whose typical time evolution is much 
larger than the typical free time evolution of the system itself. I am inter-
ested here in adiabatic perturbations acting on a quantum system whose 
time evolution is described by the Schroedinger equation [76, 77]. I also 
suppose that 

l. the system under study is characterized by a Hamiltonian H(ç(t)) that 
depends o n time through a parameter ç (t) representing the external 
perturbation; 

2. for any fixed value ç the eigenvalue equation 

(2.2.1) 

can be solved exactly and all the resulting quantum numbers embodied 
in the symbol n are discrete. 

Now, the evolution of the system when ç(t) varies with time is determined 
provided the Schroedinger equation 

i~~) = H(ç(t))lt) (2.2.2) 

is solved. Since, at any time t the states In, ç(t)) build up an orthonormal 
basis of the Hilbert space of the system, I can write the state l t) in the form 

l t) =~an( t) exp [-i 1: dt' En(ç(t'))] In, ç(t)) (2.2.3) 

where it has been assumed that the perturbation starts changing with time 
at to and where the complex coefficients an(t) have to be determined. By 
substituting Eq. (2.2.3) in Eq. (2.2.2) and by projecting the resulting equa-
tion on the state lm,ç(t)), I obtain the following differential equation for 
the coefficient am(t): 

~ + ~ (m,ç(t)18~1n,ç(t))~(t)an(t) exp [i 1: dt' ~Emn(ç(t'))] =O, 

(2.2.4) 
where 

~Emn(ç(t)) = Em(ç(t))- En(ç(t)). (2.2.5) 

Obviously, Eq. (2.2.4) is equivalent to the Schroedinger equation (2.2.2). 
Nevertheless, since the parameter ç(t) changes slowly with time, its time 
derivative ~(t) is a small quantity (in a sense that will be specified at the 
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end of this Section) and then a perturbative solution of Eq. (2.2.4) in powers 
of é(t) can be built up. Up to zero order in é(t) one simply obtains a~)(t) = 
am ( to). Also, by assuming that the system is a t time to in the state labeled 
by the index i an d that ai ( to) = l, then a~) (t) = 8m,i an d the first-order 
coefficients ag) (t) are given by 

t [ t' ] a!!l(t) = -1
0 
dnm,ç(t')IO~Ii,ç(t'))è(t')exp i 1o dt"f>tm;(ç(t")) . 

(2.2.6) 
This expression can be put in a more useful fonn. In fact, by deriving Eq. 
(2.2.1) with respect to the parameter ç and by projecting on lm,ç), one 
obtains 

(2.2.7) 

By assuming that the eigenstates In, ç) are nondegenerate the previous equa-
tion is equivalent to the following ones: 

l 
(n, çl8çln, ç) = 28ç(n, çln, ç) =O, 

(m eia l C)=- (m,çl[8çH(ç)]ln,ç) 
'~ ç n,~ ~Emn(ç) if m-# n. 

(2.2.8a) 

(2.2.8b) 

I point out that in writing the first equation one tacitly exploits the following 
facts: 

l. being the states In, ç) nondegenerate, they can be chosen to be real; 

2. being the indices n discrete, the states In, ç) are normalizable. 

In conclusion, by substituting the previous equations in Eq. (2.2.6) one 
obtains 

a?)(t)=O, (2.2.9a) 

{l) _ 1 Hmi(t) . 11 . 11 t . l [ t' ] 
am (t) -1

0 
dt f>€m;(ç(tl)) exp t L dt f>tm,(ç(t )) if m -# i (2.2.9b) 

with 

H mi (t') = (m, ç( t') lii(ç( t')) li, ç( t')) = (m, ç( t') l [8çH(ç( t'))] li, ç( t') )é( t'). 
(2.2.10) 

In particular, Eq. (2.2.9a) implies that the coefficient ai(t) is up to first 
order in è(t) equal to one. In other words, in the previous approximations 
the depletion of the initial state is at least a second-order effect in é (t). 

Finally, it must be pointed out that the first-order perturbative approxi-
mation can be safely used only if the variation of the coefficients a2) (t) with 
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m =1- i is much smaller than one in the typical time given by the inverse of 
the Bohr frequency ~Emi(ç(t)), that is only if 

(2.2.11) 

at any t 2:: to and for any m =1- i. 

2.3 Quantum field theory in curved spacetime 

It is well known that, despite many efforts, a completely satisfying quantum 
theory of the gravitational field is stili missing. Consequently, the interaction 
of a matter field and of the gravitational field has not been described in a 
completely quantum way. A less ambitious attempt to take into account the 
effects of the gravitational field on a matter field consists in [78, 79, 80] 

l. treating classically the gravitational field itself as a modification of the 
metric properties of the spacetime; 

2. quantizing the matter field in the resulting curved spacetime. 

I do not want to go into the conceptual difficulties that quantum field theory 
in curved spacetime involves and the exact physical conditions that have to 
be satisfied in order that it can be safely applied [see in particular [78]]. In 
general, it can be said that if the typical lengths involved in the problem 
under study are much larger than the Planck scale Lp = v'C = 1.6 x 
10-33 crr1 with G the gravitational constant, then the quantum effects of 
the gravitational field can be neglected and it can be treated classically. In 
this dynamical regime the gravitational field is described mathematically by 
means of the metric tensor 9J.tv(x) of the spacetime where x = (x0 , ... , x3 ) 

characterizes a generic point of the spacetime itself. When no gravitational 
field is present the spacetime is the Minkowski spacetime and, by definition, 
it is possible to choose the coordinates in such a way the metric tensor 
has the simple structure 1Jaf3 = diag(1, -1, -1, -1).6 The form itself of the 
metric tensor 1Jaf3 suggests a natural way to distinguish a time coordinate 
from the other three space coordinates. For this reason I will indicate the 
four coordinates of a generic event in Minkowski spacetime by using the 
noncovariant notation (t, r). 

Now, in this work I will deal essentially with electrons and positrons 
then I will be interested only in spinor matter fields. The treatment of a 
spinor field in general relativity is more complicateci than that of a scalar 

6 For future notational convenience, the tensor indices of quantities referring to 
Minkowski spacetime are indicated with the first Greek letters a, {3, "'(or 8, while those of 
quantities referring to a generic curved spacetime are indicated with the Greek letters in 
the middle of the Greek alphabet such as .À, f.J,, v or p. 



28 Section 2.3 

field or, in generai, of a tensor field an d i t requires a detailed analysis which 
is independent of the quantization procedure. For this reason in the next 
Paragraph I will discuss the "pedagogica!" case of the quantization of a free, 
real scalar field in curved spacetime and then in Par. 2.3.2 I will outline the 
formalism to describe a spinor field in a generai covariant way. 

2. 3.1 Quantization of a free, re al scalar fie l d in curved space-
time 

The study of quantum field theory in curved spacetime gives the possibility 
to understand that the quantization of a matter field in Minkowski space-
time and the consequent interpretation in terms of identica! particles can 
be carried out in a coherent way only because of the particular metric fea-
tures of this spacetime. Actually, in a completely generic spacetime it is 
impossible to characterize what a quantum particle is and how to detect it 
[78]. In the present Paragraph I firstly review the main steps one follows in 
quantizing a free, real scalar field in Minkowski spacetime and then I show 
which features a curved spacetime has to share in order that the same real 
scalar field can also be quantized coherently in it. In this respect, I observe 
that a scalar field in curved spacetime is intended as a general scalar that is 
a scalar quantity un der general coordinate transformations, w hile a scalar 
field in Minkowski spacetime is intended as a Lorentz scalar that is a scalar 
quantity under Lorentz transformations. Nevertheless, with an abuse of no-
tation I will indicate both these fields and their related quantities with the 
same symbol. 

If I call cj;( t, r) a free, real and Lorentz scalar field, then its Lagrangean 
density .Z is given by 

(2.3.1) 

where, after the quantization of the field itself, mo will be interpreted as 
the mass of the resulting identica! particles. The Lagrangean density .Z is 
assumed to be a Lorentz scalar in such a way the action 

8= j dtdr.Z (2.3.2) 

is also a Lorentz scalar and the equation of motion of the field 

(2.3.3) 

obtained from the stationary condition 88 =O, is covariant. The next step 
in the quantization procedure consists in finding the gene:r:al solution of Eq. 
(2.3.3) as a sum of normal modes that build up, in fact, an orthonormal 
basis of the space of the solutions of Eq. (2.3.3) itself. As it follows from 
the generai theory of partial differential equations, the normal modes can be 
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unambiguously determined only after imposing some boundary conditions 
at a fixed time t= to. If one chooses to impose periodic boundary conditions 
in a finite cubie volume V = L3 , the modes cPk(t, r) are characterized by the 
three discrete momenta k = ±2l7r /L with .e a vector of natural numbers. In 
particular they can be written as 

r~-. ( ) _ exp[-i(wkt- k · r)] Y-'k t,r - ~ 
v2Vwk 

(2.3.4) 

with Wk = J m6 + k2 an d they are orthonormal in the sense t ha t they satisfy 
the relations 

(2.3.5) 

with the scalar product between two scalar functions cfJI(t,r) and <P2(t,r) 
defined as 

( </>1, eh) = -i i dr[</JI (t, r)8t</J2( t, r) - </>2( t, r)iM1 (t, r)]. (2.3.6} 

By using the modes cPk(t, r), the generai solution of Eq. (2.3.3) can be 
written as 

cp(t, r) =L [ak<i>k(t, r) + ak.<Pk.(t, r)] (2.3.7) 
k 

and the quantization of the field consists in transforming the complex num-
bers ak into operators and in imposing the quantization rules 

[ak, a~,] = 8k,k', 
[ak, ak'] =O. 

(2.3.8a) 
(2.3.8b) 

Finally, the particle interpretation of the quantized field is achieved by in-
trod ucing the total linear momentum P of the field: 

P = -i dr1r8<P 

and the total Hamiltonian H of the field: 

H = i dr( 7r0t<P - 2') 

where 
82 

1r(t,r) = B(Bt<P) = 8t<P(t,r) 

(2.3.9) 

(2.3.10) 

(2.3.11) 

is the momentum field conjugated to cp( t, r). In fact, by substituting the 
expansion (2.3.7) in Eqs. (2.3.9) and (2.3.10) and by exploiting the or-
thonormalization relations (2.3.5) and the quantization rules (2.3.8), one 
easily finds that 

P= Lk(aka~ +a~ak) = LkNk, (2.3.12a) 
k k 
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(2.3.12b) 

with Nk = atak and with Wo = 1/2 l::k Wk an infinite constant that will 
be discussed below. Now, by using again Eqs. (2.3.8) one sees that the 
operators Nk commute among them and that they have nonnegative integer 
eigenvalues nk. Their generic common eigenstate Jnk) is such that 

Plnk) = ( ~knk) lnk), 

Hlnk) = ( ~ wknk + W o) lnk) 

(2.3.13a) 

(2.3.13b) 

and it can be interpreted as the state in which nk relativistic particles with 
mass mo, i. e. particles with fourmomentum (wk, k) = ( Jm6 + k2 ,k) are 
present. In this picture the infinite energy Wo is interpreted as the energy 
of the vacuum state IO) characterized by nk = O for all k. In Minkowski 
spacetime and, in generai, when the time evolution of the spacetime metric 
is assigned, the presence of W0 in Eq. (2.3.13b) does not play any role 
because i t is just a constant zero-point energy and i t is neglected. 7 

In what follows, I want to do the analogous steps I have already clone 
in Minkowski spacetime but in a spacetime with generai coordinates x = 
(x0 , ... , x3 ) and with metric tensor 9J.tv(x). Firstly, I generalize the La-
grangean density (2.3.1) to transform it into a general scalar Lagrangean 
density. The easiest way to do this is to replace the Minkowski metric ten-
sor rJaf3 with gJ.tv (x) and to multiply the resulting Lagrangean density by 
J-g(x) with g(x) = det(gJ.tv(x)): 

(2.3.14) 

Actually, other terms proportional, for example, to the scalar curvature 
of the spacetime could be added to this Lagrangean density but I am not 
interested in them here. Analogously, the action is defined here as 

s = J rfx.Y' (2.3.15) 

in arder that it is also a generai scalar and the equation of motion 

(2.3.16) 

7The presence of Wo must be taken into account if one wants to compute the backre-
action effects that the matter field can bave on the time evolution of the spacetime metric 
[78]. 
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is generally covariant. Now, analogously to what I have done in Minkowski 
spacetime, I have to determine the normal modes building up an orthonor-
mal basis ofthe solutions ofthe partial differential equation (2.3.16). Prelim-
inarily, I also have to define a threedimensional hypersurface, corresponding 
to the ordinary threedimensional space in Minkowski spacetime, where 

l. the scalar product between two generai scalar functions can be defined; 

2. some boundary conditions can be imposed in such a way a set of normal 
modes can be unambiguously determined. 

Now, a rigorous treatment of these subjects can be found in [81] and here 
only some stated results will be quoted. In particular, i t can be shown 
that a Cauchy hypersurface, that is a spacelike hypersurface such that any 
timelike or lightlike curve intersects it only once, shares both the previous 
features [81, 79]. A generic spacetime does not admit the existence of a 
Cauchy hypersurface. Instead, it can be shown that the so-called global 
hyperbolic spacetimes not only admit a Cauchy hypersurface but they can 
also be "foliated" by means of Cauchy hypersurfaces. By ignoring here the 
exact mathematical definition of a global hyperbolic spacetime [it can be 
found, for example, in [81]], one can conclude that the topological structure 
of a globally hyperbolic fourdimensional spacetime is ~ x M3 where ~ will 
act as the time axis and M3 as the threedimensional manifold representing 
the ordinary space. If one also assumes that each "leaf" of the foliation can 
be represented by an equation like x0 = const., one can consider x0 as the 
t ime coordinate an d ( x1 , x2 , x 3 ) as the three space coordinates. In this way, 
to work in a globally hyperbolic spacetime allows to 

l. define, analogously to Eq. (2.3.6), the scalar product between two 
generai scalar functions c/Jl (x) and c/J2(x) as 

(2.3.17) 

where ~ is, in fact, a Cauchy hypersurface (it can be shown that the 
value of the scalar product does not depend on the Cauchy hypersur-
face one chooses) and n1-L(x) is the normal versor to ~ at x; 

2. assume that the normal modes of Eq. (2.3.16) can be determined. 

Now, I remind that also in Minkowski spacetime when a matter field 
has to be quantized in the presence of an external (for example, electric or 
magnetic) time-dependent field, then the definition of the "energy" of the 
particles and then of the particles themselves is obscure [3, 4]. An analogous 
problem arises in quantum field theory in curved spacetimes when the metric 
tensor 9p,v(x) depends on the time coordinate x 0 . It can be shown that, in 
or der to avo id these further difficulties, o ne has to assume the spacetimes to 
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admit a Killing vector which is everywhere timelike [82, 78]. In particular, 
this feature implies that the spacetime is static meaning that it is possible 
to choose the coordinates x in such a way that 9oi(x) =O and 8og1w(x) =O. 
At this point the quantization procedure is completely analogous to that in 
Minkowski spacetime and I will not repeat the remaining steps. I only point 
out that the definition of the Hamiltonian density of a quantum field is a 
controversia! operation in curved spacetime [83, 84, 85]. For definiteness, I 
shall adopt the same definition given in [86] that is, actually, the same one 
gives in Minkowski spacetime. In particular, in the present case o ne firstly 
introduces the momentum canonically conjugated to the field qy(x) as 

85/ 
1r(x) = 8(8oc/J) 

and then defines the Hamiltonian density as 

(2.3.18) 

(2.3.19) 

2.3.2 Spinor fields in generai relativity: the tetrad formalism 

We know that by using the equivalence principle and the principle of generai 
covariance, a recipe can be given in order to transform a Lorentz covariant 
equation into a generai covariant equation [82]: 

l. replace the metric tensor 1Jaf3 with 9J.Lv(x); 

2. replace the derivatives with the covariant derivatives. 

Actually, in doing so one tacitly assumes to interpret all the Lorentz tensor 
fields as general tensor fields and this can be done only because a tensor 
under generai coordinate transformations is also a tensor under Lorentz 
transformations. Now, this procedure can not be carried out when equations 
contain spinor quantities because there is no t a representation of the group of 
the general coordinate transforrnations that behaves like a finite dimensionai 
spinor representation under the subgroup of the Lorentz transforrnations [82]. 
For this reason the previous recipe to transform a Lorentz covariant equation 
into a generai covariant equation becomes inapplicable if the equation itself 
contains spinor quantities and another procedure has to be followed. This 
procedure is called vierbein or tetrad formalism and it consists, firstly, in 
introducing normal coordinates Yx at any spacetime point X. By means of 
these coordinates the metric tensor 9J.Lv(x) can be written in terms of another 
set of coordinates x = ( x 0 , ... , x3 ) as 

(2.3.20) 

where the quantities 

(2.3.21) 
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build up the so-called tetrad field. The tetrad field has the peculiar property 
to transform as a fourvector both under a generai coordinate transformation: 

(2.3.22) 

and also under a local Lorentz transformation A~(x): 

(2.3.23) 

For this reason, by contracting e~(x) with a contravariant generai fourvector 
Vtt(x) as 

(2.3.24) 

one obtains a set of four generai scalars. Analogously, by using the metric 
tensor Tfaf3 (TJaf3) to lower (rise) the indices a, f3 and so on, and the metric 
tensor 9t-tv(x) (gt-tv (x)) to Iower (rise) the indices p,, v and so on, that is by 
putting 

eat-t(x) = Tfaf3e~(x), 
eat-t(x) = gt-tv (x)e~ (x), 
e~(x) = Tfaf39t-tv (x)e~ (x), 

(2.3.25a) 

(2.3.25b) 

(2.3.25c) 

one can also transform, for example, generai covariant tensors Tt-tv(x) into a 
set of generai scaiars Taf3 (x) by simpiy defining 

(2.3.26) 

N ow, Iet consider only the particular problem of transforming a man-
ifestly Lorentz scalar Lagrangean density into a manifestiy generai scalar 
Lagrangean density. At first sight, one can simpiy assume that all the fields 
appearing in the initiai Lagrangean density are sets of generai scaiars fieids 
like va(x) or Ta(3(x), but this is not enough because a probiem arises when 
derivative terms are present. In fact, let suppose that 

l. w(x) is a generic muiticomponent field that 

la. is a set of generai scalar fieids [like the fields va(x) or Taf3(x)]; 

lb. transforms as w(x) ---* D(A(x) )w(x) under the Iocai Lorentz trans-
formation A3(x) with D(A(x)) a certain matrix representation of 
the Lorentz group; 

2. w(x) appears in the Lagrangean density to be transformed through a 
term like 8aw(x) = e~(x)at-t w(x). 
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Since 8p, w(x) transform as a fourvector under generai coordinate transforma-
tions then 8a w(x) is a set of generai scalars. But, the equivalence principle 
requires that special relativity should apply in locally inertial reference sys-
tems regardless the local inertial reference system one chooses. In other 
words, the final Lagrangean density must also be invariant under a local 
Lorentz transformation. Now, the quantity Baw(x) transforms under the 
local Lorentz transformation A3(x) as 

(2.3.27) 

and the presence of the second term would destroy the invariance of the 
Lagrangean density under the same transformation. For this reason, one 
introduces the "covariant" derivative 

(2.3.28) 

where the quantities r p,(x) are matrices of the same dimension of the repre-
sentation D(A(x)) and are called connections. By assumption, the connec-
tions r p,(x) transform under the local Lorentz transformation A3(x) as 

r p,(x) -+ D(A(x))r p,(x)D-1(A(x)) - [8p,D(A(x) )]D-1(A(x)) 

in such a way that [see Eq. (2.3.27)] 

(2.3.29) 

As a conclusion, by assuming the fields appearing in the initial Lorentz scalar 
Lagrangean density as sets of general scalars and by substituting the ordinary 
derivatives Ba with the covariant derivatives ~a, the resulting Lagrangean 
density is a manifestly general scalar quantity. Actually, one requires that a 
Lagrangean density is a generai scalar density quantity that integrated on dx 
gives a generai scalar action, then, after all, the resulting Lagrangean density 
must be multiplied by J -g(x) with g(x) = det(gp,v(x)) [87]. Obviously, by 
excluding this last point, the previous recipe can be followed to transform 
any Lorentz covariant equation into a generai covariant one. In particular, 
it can be shown that when one deals only with tensor fields it coincides with 
the more usual recipe given at the beginning of the Paragraph. 

Now, if the generic field w(x) is, actually, a fourcomponent spinor field 
then it can be shown that the connections r p,(x) are given by [82] 

(2.3.31) 

where 

(2.3.32) 
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are the Christoffel symbols [87] and where aa/3 = i[fa, ìf3]j2 with ì 0 = 
/3, ì 1 = f3ax, ì 2 = f3ay and 'Y3 = f3az are the covariant Dirac matrices 
satisfying the anticommutation relations { ìa, 'Y/3} = 2ryaf3. In this way, by 
reminding that the Dirac Lagrangean density in Minkowski spacetime can 
be written as 

(2.3.33) 

and by following the rules just stated, the generai scalar Dirac Lagrangean 
density is given by 

2 = J -g(x) H [ W-y"e~(x)(~I'W)- (W~I')e~(xh"W]- mWW} 

= J -g(x) { ~ [ h"(x)(~" W)- (W~~th"(x)W ]- mWW}. 

It is worth doing some observations about Eq. (2.3.34): 

(2.3.34) 

l. as in quantum field theory in Minkowski spacetime, the adjoint field 
~(x) and the Hermitian conjugated field wt(x) are connected here by 
the relation ~(x) = wt(x)'Yo; 

2. the "left" covariant derivative is defined as 

(2.3.35) 

f-

where the symbol "8~-t" means that the partial derivative acts on the 
spinor on its left and the minus sign comes from the fact that the 
Lagrangean density must be real and that rt(x) = -'Y0r Jt(x)ì0 ; 

3. the matrices 1~-t(x) = e~(x)ìa are called general covariant Dirac ma-
trices and they satisfy the anticommutation rules { ìJt(x), ìv (x)} = 
2g1-tv(x). 

By applying the usual variational method to the action S = J dd, one 
obtains the generai covariant Dirac equation in the form 

(2.3.36) 

Finally, the scalar pro d uct between two spinors w 1 (x) an d W 2 (x) is defined 
in a generai covariant way as 

(2.3.37) 

with ~a Cauchy hypersurface, ni-t(x) the normal versor to ~ at x and ì~-t(x) = 
9~tv ( x)ìv (x). 
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Chapter 3 

Pair pro d uction in a strong, 
uniform and slowly-varying 
magnetic field 

In this Chapter I present my originai resuits about the eiectron-positron pair 
production in the presence of a strong, uniform and siowiy-varying magnetic 
fieid. The Chapter is divided in two parts. In the first one the theoreticai 
assumptions and the generai features of my approach are given (Sect. 3.1) 
whiie in the second one (Sect. 3.2) the presence probabiiity of a singie pair 
is calcuiated by considering two different magnetic fieid time variations. 

3.1 Theoretical model 

AsI have said in the Introduction and in Chap. l, my work mainiy concerns 
the production of pairs in the presence of strong (>>Ber = 4.4 x 1013 gauss), 
uniform and siowiy-varying magnetic fieids. I will show in the next Para-
graph that these assumptions about the structure of the magnetic fieid are 
justified in the astrophysicai scenario I imagine to appiy to my calcuiations 
and that I have described in Sect. 1.2. Since the magnetic fieid is assumed 
to be siowiy-varying, I will perform in Par. 3.1.2 some preiiminary calcuia-
tions in the framework of the first-order adiabatic perturbation theory that 
I will use in Sect. 3.2. 

3.1.1 Generai assumptions 

As I have said in Par. 1.2.3, I imagine the magnetic fieid I deai with to 
be produced by a (forming or collapsing) magnetar or by a forming biack 
hoie. In particuiar, in this Chapter I want restrict my considerations to the 
production of pairs around magnetars in order to simpiify the treatment 

37 
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by neglecting ali the effects due to the compact object gravitational field.l 
N ow, we ha ve seen t ha t indirect estimates suggest that the magneti c field 
of a magnetar can be safely assumed to be one or two orders of magnitude 
larger than Ber· In generai, the magnetic field produced by a magnetar is a 
dipole field and then it is not uniform in space. Also, since the production of 
the fireball happens during the formation or the collapse of the magnetar it 
is reasonable to assume the magnetic field produced by the magnetar itself 
to be time-varying. Now, the physical problemI want to solve clearly has 
two different scales of length and time: a macroscopic one related to the 
typical linear dimension of a magnetar ("' 106 cm) and to its typical time 
formation or collapse ("' l s) an d a microscopic one related to the elementary 
particles to be produced which is given by the Compton length of the electron 
,\ "' 10-11 cm. Clearly, the order of magnitude of the macroscopic scale is 
much larger than that of the microscopic one and this allows me to consider 
during the pair production process the magnetic field of the magnetar as 
uniform in space and slowly-varying in time. Below, I will consider two 
different kinds of magnetic field time evolutions and they are both particular 
cases of the following one:2 

w h ere 

B(t) = (By~ t)) = B(t) (sin ~(t)) 
Bz(t) COS t9(t) 

B(t) = J B~(t) + B;(t), 

tan t9(t) = By( t). 
Bz(t) 

(3.1.1) 

(3.1.2a) 

(3.1.2b) 

From a macroscopic point of view the time variation of B(t) implies the 
presence of a nonuniform electric field E( t, r). In the symmetric gauge in 
which 

l A( t, r) = - 2 [r x B(t)], (3.1.3) 

the electric field is given by 

l . 
E( t, r) = -8tA(t, r) = 2[r x B(t)]. (3.1.4) 

1The gravitational force exerted on an electron (positron) by a typical 2 solar masses 
magnetar is several orders of magnitudes weaker than that exerted by its magnetic field. 
Nevertheless, the gravitational effects will be taken into account in Chap. 5 where the 
pair production around massive black holes is considered. 

2 Concerning the magnetic field and its components, I use, apart from the time depen-
dence, the same notation I have used in the previous Chapter just to have the possibility 
to exploit many results obtained there. 
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Apart from the particular case in which the magnetic field depends linearly 
on time, the electric field also depends on time. Now, since I am interested in 
the production of electrons and positrons from vacuum I assume the calcu-
lations to be applied to regions where conduction currents are not present.3 

In this case, the Ampère-Maxwell equation 8 x B- 8tE =O would require 
the existence of a correction to B(t) proportional to B(t) and nonuniform 
in space. But, reminding that B(t) is assumed to be slowly-varying, I am 
allowed to carry out all the calculations up to first order in B(t), so, consis-
tently, to neglect any contribution proportional to B(t). On the other hand, 
as we will see, the presence of the electric field E( t, r) plays an important 
role in the pair production process. Actually, it can be said that just the 
presence of the electric field E( t, r) accounts for the pair production process 
because it supplies the energy to create the pair. Nevertheless, in this re-
spect, a conceptual difference between the present model and the Schwinger 
pair production mechanism described in Sect. l. l must be pointed out: here 
the electric field (3.1.4) is rotational, then it does not admit a scalar poten-
tial and the interpretation of the pair production process as a tunnel effect 
is not straightforward. 

3.1.2 Application of the first-order adiabatic perturbation 
theory to the pair production process: preliminary cal-
culations 

I have just said that the interpretation of the pair production process in 
terms of the Schwinger mechanism is not straightforward in the problem 
under consideration. Also, since the astrophysical models generally refer 
to the strong magnetic fields present around magnetars and not to their 
induced electric fields, I want to put into evidence in the final results the 
role of the magnetic field B(t). For this reason and being the magnetic field 
B( t) a slowly-varying quantity, I will interpret the pair production process 
as a transition induced by the external adiabatic perturbation B(t) on the 
quantum system represented by a second-quantized Dirac field 'l/;( t, r). The 
Hamiltonian of this system is given by 

H(t) = J dr.j)(t,r)Ji(t),P(t,r) (3.1.5) 

with 
'H( t) =o:· [-io+ eA(t, r)] +{3m (3.1.6) 

and it depends on time through the slowly-varying magnetic field B(t) hid-
den in A( t, r ). In order to apply the first-order adiabatic perturbation theory 
to the problem at hand, I have to determine the instantaneous eigenvalues 

3 The electric field (3.1.4) is divergenceless then the electric charge density vanishes 
everywhere. 
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and eigenstates of the Hamiltonian (3.1.5) (see Sect. 2.2). As a first step, 
I address the problem of quantizing the Dirac field 'l/;( t, r) in the presence 
of the magnetic B introduced in the previous Chapter [see Eq. (2.1.38)) 
which is identica! to B( t) just apart from the time dependence. Since I have 
already determined the one-particle orthonormal basis { Uj ( r), Vj ( r)} with 
j = {nd,k,a,n9 } [see Eqs. (2.1.46) and (2.1.23)), I can expand the Dirac 
field 'l/;( t, r) as 

'l/;( t, r) = 'L:)cj exp( -iwjt)uj(r) +dj exp(iwjt)vj(r)] 
j 

and impose the usual anticommutation rules 

{ Cj, cj,} = {dj, dj,} = 8j,j', 

{ Cj, Cj'} = { Cj , d},} = { Cj, dj'} = {dj , dj'} = 0 

(3.1. 7) 

(3.1.8a) 

(3.1.8b) 

among the coefficients Cj and dj that are now operators. By exploiting the 
orthonormalization rules (2.1.49) among the spinors uj(r) and vj(r) and 
the previous anticommutators it is easy to see that the second quantized 
Hamiltonian H= J dr 'l/;t(t,r)'H'l/;(t,r) with 'H given by Eq. (2.1.41) [that 
is by Eq. (3.1.6) without the time dependence) becomes 

H- ""(w·N· + w·N·) -L....J J J J J (3.1.9) 
j 

where Nj = c}cj and Nj = d}dj and where the zero-point energy has been 
set to zero. Obviously, if IO) is the vacuum state defined by the relations 
Cj IO) = dj IO) = O, the eigenstates of the Hamiltonian (3.1.9) are the Fock 
states 

while the corresponding eigenvalues are given by 

W= L(wjlnjt + W]/1-3) 
l 

(3.1.10) 

(3.1.11) 

with l a generic integer index. At this point, the instantaneous eigenvalues 
and eigenstates of the time-dependent Hamiltonian (3.1.5) are simply given 
by the previous expressions (3.1.10) and (3.1.11) by adding the dependence 
on time. Also, the creation from vacuum of a pair with the electron and the 
positron in the states j and j' respectively at time t is represented by the 
adiabatic transition 

IO(t)) ~ lj/(t)) =: c}(t)dj,(t)IO(t)). (3.1.12) 
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The probability associated with this transition is given, in the framework 
of the adiabatic perturbation theory up to first order in B(t), by Pjj'(t) = 
bjj'(t)l 2 where [see Eq. (2.2.9b)] 

t . ( ') { t' } , Hjj' t . , , - " "fjj'(t) = r dt ( ') _ ( ') exp ~ r dt [w,( t ) + Wq'(t )] lo Wj t + wj' t } 0 
(3.1.13) 

with 

iijj'( t') = (jj' (t') Iii (t') IO( t')). (3.1.14) 

It is worth doing a couple of observations about this formula. Firstly, the 
initial time t = O when the magnetic field is supposed to start changing 
represents, in the astrophysical scenario I imagine to apply my calculations, 
the beginning of the magnetar collapse into a black hole or the beginning of 
the magnetar (black hole) formation. Secondly, the usual physical interpre-
tation of the square modulus of the coefficients an( t) in Eq. (2.2.3) forces 
to interpret Pjj'(t) not as a creation probability at time t but as a presence 
probability a t t ime t that is as the probability t ha t, being the system in the 
vacuum state at the initial time t = O, a pair is present at time t > O with 
the electron in the state j an d the positron in the state j'. 

N ow, the time derivative of the Hamiltonian H (t) is given by [ see Eqs. 
(3.1.5) and (3.1.6)] 

H( t)= B(t) · 8a(H(t)) = B(t) · j dr<f}(t,r)8a(1i(t)),P(t,r) 

= ~ e~(t) · j dr.pt(t,r)(r x a),P(t,r) 

and it can be written in terms of the electric field (3.1.4) as 

H(t) = ~e j dr.pt (t, r)a ·E( t, r),P(t, r ). 

(3.1.15) 

(3.1.16) 

This expression points out the fundamental role of the in d uced electric field 
E( t, r) in the production process and, by reasoning as in first quantization, 
it has a clear physical meaning. In fact, by reminding that the vector a can 
be interpreted as the one-particle relativistic operator corresponding to the 
velocity of the electron, Eq. (3.1.16) expresses the fact that the variation 
per unit time of the energy of the electron is equal to the mean value of 
the power supplied to the electron itself by the external electric field E( t, r ). 
On the other hand, the time derivative in Eq. (3.1.15) can be written in 
terms of the rotated Dirac field 'lf;'(t,r) = R~1/2)(iJ(t))'l/;(t,r), which is the 
field operator when the magnetic field is directed along the z axis and its 
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strength is B(t) [see Eqs. (2.1.46)]: 

· eB(t) j t H (t) = - -
2

- · dr'ljJ (t, r) ( r x a) 'ljJ (t, r) 

=- e~(t). j dr,p'l(t,r)nl,112l(1J(t))(r x a)nl,112lt(1J(t)),P'(t,r) 

eB'(t) j = --
2

- dr'lj;'t (t, r)(r x a)'ljJ'(t, r) 
(3.1.17) 

where I used the fact that both a and rare vector operators and where 

B'(t) = (cos19(t)J!ly(t) ~sin 19(t)i!z(t)) = (B(~~J(t)) . 
sin?J(t)By(t) + cos?J(t)Bz(t) B(t) 

(3.1.18) 

The form of the vector B' (t) shows that the effects of the change of the 
direction and of the change of the strength of the magnetic field have been 
completely disentangled. In this way, one is able to connect the time varia-
tion of the magnetic field with some selection rules concerning the states in 
which the pair can be created. To do this I define the operator 

T' (t) = -i j dr,p't (t, r )(r x a),P' (t, r ). (3.1.19) 

Since T'( t) is a vector operator and the states IO(t)) and ljj'(t)) are instan-
taneous eigenstates of the total angular momentum operator J1j112

) (t) = 
J dr'lj;t(t,r)Jjf1

/
2)(t)'lj;(t,r), then the Wigner-Eckart theorem allows tostate 

the selection rules resumed in Tab. 3.1 where jll = nd - n 9 + a /2 and 
jf1 =n~- n~+ a' /2 [see Eq. (3.1.18) and the last line of Eq. (3.1.17)]. 

Transition operator Selection rule 
?J(t) =o T~(t) jll + jfl =o 
É(t) =o T~(t) jll + jfl =±l 

Table 3.1: Selection rules 

The first selection rule in the previous table has an interesting classica! 
counterpart. In fact, following the interpretation of the pair creation in the 
Dirac hole theory, this selection rule means that an electron in the presence 
of a slowly-varying magnetic field with constant direction conserves its total 
angular momentum going from a negative energy level to a positive one. 
Analogously, in classica! mechanics the angular momentum of the electron 
is, in the same physical situation, an adiabatic invariant [72]. Apart from 
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those in Tab. 3.1, another important selection rule can be obtained. In fact, 
it can easily be shown that 

HjJ'(t') = B'(t) · (jj'(t)IT'(t)IO(t)) 

eB'(t) j tt , = --
2
- · druj (t, r)(r x a)vj,(t, r) (3.1.20) 

= B'(t). Tjj'(t) 

where I have defined the one-particle transition matrix elements 

Tjj'(t) = -~ j dru~t(t,r)(r x a)vj,(t,r). (3.1.21) 

If the magnetic field has a constant direction then fJ( t) = O an d only the 
matrix elements Tjj'z(t) play a role (see Tab. 3.1). Also, it can be seen that 
(r x a).z anticommutes with the one-particle spin operator O"z/2: 

(3.1.22) 

Then, if two states uj( t, r) and vj,( t, r) are eigenstates of az with eigenvalues 
a and a' respectively then the transition matrix element Tjj'z(t) is different 
from zero only if 

a+ a'= O. (3.1.23) 

Now, even if the magnetic field changes with time, the instantaneous TGSs 
u~,k(t, r) and v~',k'(t, r) given in Eqs. (2.1.35) are eigenstates of az with the 
same eigenvalue -1 and for every t [see the discussion below Eq. (2.1.37)]. 
This implies that if B( t) changes only in strength the creation of a pair in 
which the electron and the positron are both in a TGS is forbidden because 
Eq. (3.1.23) is not satisfied. In other words, up to first-order adiabatic 
perturbation theory only the rotation of the magnetic field may allow the 
creation of a pair with both the electron and the positron in a TGS. 

3.2 Pair production in the presence of a strong, 
uniform and slowly-rotating magnetic field 

In the first analysis on the production of pairs in the presence of strong, 
uniform and slowly-varying magnetic fields it was considered the case in 
which only the magneti c field strength changes with time [88]. In order to 
avoid the presence of nonuniform corrections to the magnetic field B(t) its 
strength was supposed to change linearly with time [see discussion below 
Eq. (3.1.4)] that is 

(3.2.1) 
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with Bo, b > O an d Bo >> Ber. Since this case was analyzed before my own 
work, I only quote in my notation the final result that is the total probability 
per unit volume that a pair is present at a time t: 

dP~in(t) r-v l [((1.5) +_l_] e3f2(bR.l.M)2 [Biin(t) + l ] 
dV l61rJ2 256 157r Bg12 J Biin(t) 

(3.2.2) 
where ((x) is the Riemann function with ((1.5) = 2.61 ... [89) and where 
the symbol r-v indicates that the result holds asymptotically at large times. 
In Eq. (3.2.2) the square of the quantity R.1.M also appears. Its origin 
and its exact meaning will be explained below when the analogous presence 
probability will be calculated in the presence of a purely rotating magnetic 
field. At the moment, I only point out that 

l. R .l. M can be interpreted as the typical radius of a circle in the p lane 
perpendicular to BVn(t) within which the magnetar magnetic field can 
be assumed as uniform; 

2. the appearance of R.1.M in Eq. (3.2.2) can be understood in terms 
of the nonuniform electric fie l d in d uced by the time-varying magnetic 
field BVn(t). 

Finally, another observation concerns the dependence of the presence prob-
ability (3.2.2) on the square of the time derivative b of the magnetic field 
BVn( t) that is, in fact, typical when the first-order adiabatic treatment is 
used to calculate a transition probability ( the transition amplitude clearly 
is proportional to the time derivative of the perturbation and it has to be 
squared to obtain the corresponding transition probability). 

Now, already in [88) it was observed that if the magnetic field direction 
do es no t change with time the pro d uction of pairs in w hich bot h the electron 
and the positron are in a TGS is forbidden. AsI have said in Par. 2.1.2, since 
in the strong magneti c field regiine the energies of the TGSs are much smaller 
than those of the other excited Landau levels, it is reasonable to imagine that 
the production of pairs with both the electron and the positron in a TGS 
is strongly favoured ( when it is not forbidden by any selection rule). For 
this reason, by remembering the last statement in the previous Paragraph 
[see the discussion below Eq. (3.1.23)], the most natura! continuation of 
the analysis started in [88) has been the treatment of the pair production 
process in the presence of a changing-direction magneti c field. In particular, 
the purely rotating magnetic field configuration [90): 

(3.2.3) 



Chapter 3 45 

with B l > O an d B l >> Ber allows an easier mathematical treatment of the 
problem. In fact, from Eq. (3.1.18) we have that 

(3.2.4) 

and that only the matrix elements 

Tjj'y(t) = -% j druj(t,r)(r x a)yvj,(t,r) 

= -~ j druj(t,r)(za,- xaz)yvj,(t,r) 
(3.2.5) 

have to be calculated. Now, I have checked that if P99,(t) = P(IO(t)) -+ 
lgg'(t))) is the probability that a pair is present at time t with the electron 
and the positron both in a TGS and Pjj'(t) is the probability that a pair 
is present at time t with the electron and/or the positron in another state, 
then 

(3.2.6) 

For this reason, I am allowed in first approximation to neglect all the tran-
sitions to pair states in which at least the electron or the positron is not in 
a TGS. 4 There are only two transition amplitudes different from zero t ha t 
contribute to the creation of a pair with the electron and the positron both 
in a TGS. In fact, since the TGSs are eigenstates of az the term in Eq. 
(3.2.5) containing ax vanishes. Also, reminding that the electron (positron) 
TGSs are those with nd = O and a = -1 (n9 =O and a = +1), the only 
allowed final pair states are the states [see also the expression (2.1.21a) of 
the coordinate x in terms of ad, a~, a9, atJ 

In, k; n± l, -k) =IO, k, -l, n; n± l, -k, +l, O) (3.2.7) 

where, for simplicity, I have omitted the time dependence. The transition 
amplitudes corresponding to these states are given by 

(3.2.8a) 

(3.2.8b) 

where [see Eq. (2.1.37)] Ek = Vm2 + k2 . Actually, for later convenience, 
I want to consider the probability that the electron and the positron are 

4In any case, in Appendix A I study the generai features of the amplitudes of these 
remaining transitions. 
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present in wave packets that are linear superpositions of TGSs with the 
same energy. In particular, I will consider the following pair state 

(3.2.9) 

where 
00 00 

lne) =L bn(ae)ln, k) =L bn(ae)IO, k, -l, n), (3.2.10a) 
n= O n= O 

00 00 

l Op) = L bn' ( Op) l n', - k) = L bn' (O p) l n', - k, +l, O) (3.2.10b) 
n'=O n'=O 

and where 
(3.2.11) 

with z a generic complex number. As it is evident from these equations, I 
have chosen as final states a double piane wave state concerning the longitu-
dinal motion and a double coherent state concerning the transverse motion 
[73]. In the coherent states with lnel >>l (lapl >> l) the electron (positron) 
has a good spatial localization in the piane orthogonal to the magnetic field 
and this will give me the possibility to understand the role of the induced 
nonuniform electric field 

(3.2.12) 

in the process of pair creation. 
Now, it can easily be shown from Eqs. (3.2.8) that the transition ampli-

tude from vacuum to the state lneap) can be written in the form 

rk( Oe, Op; t) = rllk( t)r_i ( Oe, Op) (3.2.13) 

with the longitudinal and the transverse amplitudes given by 

(3.2.14a) 

00 

r_i(Oe,ap) =L [b~(ae)b~+l(ap)v/n +l+ b~(ae)b~-l(ap)vn). (3.2.14b) 
n=O 

In this way the longitudinal and the transverse part of the presence ampli-
tude have been disentangled and only the longitudinal part depends on t. 
Obviously, the corresponding presence probability lrk(ae, ap; t)l 2 can also 
be divided into a longitudinal part and a transverse part. The longitudinal 
part is given by 

dR (k ) =l (k )12 Lz dk = eB7 ( 0)2sin
2 

s(k)t Lz dk 
Il ,t rll ,t 2?T 32m s6(k) 2?T (3.2.15) 
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where I multiplied by the number of states Lzdk/(27T) [see Eqs. (2.1.30)] and 
where ék---+ s(k) for continuous k. The corresponding integrated probability 
per unit time is given by 

(3.2.16) 

and I can give an asymptotic estimate of this integral by assuming to be 
interested only in times t such that m t = t/.\ >> l (in the astrophysical sys-
tem under consideration this assumption is very realistic). The asymptotic 
estimate can be performed by using the method proposed in [91] and the 
result is 

d.Fj1(t) eBrLz (n) 2{f. ( 7T) 
-- rv - - s1n 2mt + - . dt 647r m mt 4 

(3.2.17) 

Now, I will calculate the transverse part of Eq. (3.2.13) or, equivalently, 
its complex conjugate 

00 

l'j_(ae,ap) =E [bn(ae)bn+l(ap)Jn +l+ bn(ae)bn-l(ap)v'n]. (3.2.18) 
n=O 

From Eqs. (3.2.11) I obtain 

(3.2.19) 

then the transverse presence probability of a pair with the electron in a 
coherent state between lae) and lae + dae) and the positron in a coherent 
state between l ap) an d l ap + dap) is 

It can be shown [73] that the phase of ae (ap) is connected with the azimuth 
of the mean position of the electron (positron) in the plane orthogonal to 
Br(t) while the modulus lael (lapl) is connected with its mean distance from 
the origin in the same plane. Then, since I am not interested in the exact 
position of the pair, I put 

ae = lael exp(i4>e) = 'fJe exp(i4>e), 
ap = lapl exp(i4>p) = 'fjpexp(i4>p) 

(3.2.21a) 
(3.2.21b) 
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and I integrate on the angles cPe and cPp· The result is 

(3.2.22) 

where Io(x) is the zero-order modified Bessel function [89]. In order to obtain 
a more transparent formula I define the variables 'fJ and cjJ by means of the 
equations 

'fJe ='T} COS c/J, 
'f}p = 'T} sin cjJ 

(3.2.23a) 
(3.2.23b) 

and I integrate on the phase c/J. Since 'TJe and 'f}p vary from O to oo, 'T} and cjJ 
vary from O to oo and from O to 1r /2 respectively, then, after performing the 
integrai on c/J, I obtain the differential probability 

(3.2.24) 

N ow, there is an interesting relation between 'T} an d the mean value in the 
states lae) and lap) of the operator Rl_ defined in Eq. (2.1.45) [see also Eq. 
(2.1.13)]. In fact, by using the eigenvalue equations (2.1.17d), (2.1.18d) and 
the definitions (3.2.10), it is easy to show that 

(3.2.25a) 

(3.2.25b) 

But, since the one-particle energy of the electron (positron) do not depend on 
the quantum number n9 (nd) and then on the quantity 'TJe ('fJp), there are no 
dynamical constraints o n the maximum value that 'TJe ( 'f}p) can assume. Also, 
since the pair production process is imagined to take place in a macroscopic 
astrophysical environment, I can assume that R1_(ae) >> ~ and R1_(ap) >> ~ 
in such a way 

2 eBr 2 'TJe c:::: - 2-Rj_(ae) >>l, 

'TJ; c:::: e~! Rl_(ap) >>l 

(3.2.26a) 

(3.2.26b) 

where I exploited the fact that in the strong magnetic field limit Jef3i >> 
1/~. Even if the previous inequalities hold, the internai consistency of the 
model requires that the quantities R]_ ( ae) and R]_ ( ap) can not be too large. 
In fact, on the one hand the magnetar magnetic field must be approxima-
tively uniform inside a region with typicallinear length R1_(ae) or R1_(ap) 
than R1_(ae) << 106 cm and R1_(ap) << 106 cm. On the other hand, it can 
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be shown, by applying Eq. (2.2.11) to the present case, that the first-order 
adiabatic treatment can be safely used only if the conditions 

Bl OR_1_(ae)B <<l, 
cr 

OR_i(ap)BB! <<l 
cr 

(3.2.27a) 

(3.2.27b) 

are satisfied. I observe that these conditions do not constraint very much the 
allowed values of R_1_(ae) and R_1_(ap). In fact, by assuming B7 = 1015 gauss 
and n = l s-1 [see the discussion before Eq. (3.1.1)], then the conditions 
(3.2.27) are satisfied if R_1_ ( ae) << 109 cm and, analogously, if R_1_ ( ae) << 
109 cm while we already know that the strong inequalities R_1_ ( ae) << 106 cm 
and R_1_(ap) << 106 cm must hold. Also, it can easily be checked that these 
previous strong inequalities do not contradict Eqs. (3.2.26). 

Now, if I define the "mean" quantity 

R_l_m = 

then [see Eqs. (3.2.26)] 

R}_(ae) + R}_(ap) 
2 

. l 2 2 eB l [ 2 ( 2 J _ r::r;-: 'TJ = y 'T/e+ 'TJp ~ - 2- R_1_ ae) + R_l_(ap) - y eB(R_im 

(3.2.28) 

(3.2.29) 

and I can write the transverse probability per unit area as [see Eq. (3.2.24)] 

dP_1_(R_1_m) rv (eB7 )2 R2 
dA_1_ - 27r _l_m (3.2.30) 

where dA_1_ = 1rdR}_m is the differential transverse area. Since Eq. (3.2.30) 
does not depend on t, by putting together Eqs. (3.2.17) and (3.2.30) and 
by dividing by Lz, I obtain the presence probability per unit time and unit 
volume dV= LzdA_1_, as 

dP7(t) rv m4 
( B7 )

3 
(R_1_ n)2 sin(2mt + 7r/4) 

dV dt 27r 4Bcr m y'1imt (3.2.31) 

where the symbol rv reminds that this is an asymptotic formula valid for 
mt >> l. As I have said below Eq. (3.2.2), the fact that the probability 
(3.2.31) grows quadratically with R_im can be understood in terms of the 
induced electric field E1(t, r) [see Eq. (3.2.12)]. In fact, fora purely rotating 
magnetic field 

2 2 n2 BJ 2 
E1y(t,r) + E1z(t,r) = - 4-x . (3.2.32) 

In order to connect this quantity with R1_m I observe that 

(3.2.33) 
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where R1_(t) and cj;(t) are the polar coordinates in the plane orthogonal to 
B7(t). Ifl define the function EJyz(Rl_) as the average of EJy(t, r)+EJz(t, r) 
on the angle cj;(t), I obtain from Eqs. (3.2.32) and (3.2.33) 

(3.2.34) 

With this formula the probability (3.2.31) can be written in the different 
form 

dP7(t) e2 B!EJyz(Rl_m) sin(2mt + 7r/4) 
dV dt rv l61r Ber J1fmt (3.2.35) 

that points out which is the role of the induced electric field in the pair 
production process and why the final presence probability per unit volume 
an d uni t time depends on R]_m. The fact that the probability itself depends 
only on Efy(t, r) and E!z(t, r) can be explained by rewriting the transition 
matrix elements (3.1.20) as [see Eq. (3.1.16)] 

iiJj'(t) =-e j drE!(t,r) · [u?(t,r)avj,(t,r)] (3.2.36) 

where 
l . 

E!(t,r) = 2[r x B!(t)] (3.2.37) 

is the induced electric field seen from the frame which rotates around the 
x axis and whose z axis is instantaneously parallel to B7(t). Now,' the 
particular structure of the TGSs [see Eqs. (2.1.35)] makes so that only the 
az term contributes to the transition and this term contains only E!z(t, r) 
which is a linear superposition only of E1y(t,r) and E7z(t,r): 

Erz(t, r) = cos Ot E!z(t, r) +sin Ot E7y(t, r). (3.2.38) 

Obviously, it would be interesting to compare the final presence prob-
ability (3.2.31) obtained here and that obtained in [88] [see Eq. (3.2.2)]. 
Nevertheless, this comparison is made hard because 

l. the time evolutions of the magnetic fields (3.2.1) and (3.2.3) are very 
different from each other; 

2. Eq. (3.2.2) is a presence probability per unit volume while Eq. (3.2.31) 
represents a presence probability per unit volume and unit time; 

3. the physical meaning of the quantities R1_M and Rl_m appearing in 
Eq. (3.2.2) and in Eq. (3.2.31) respectively is slightly different. 

For these reasons, in order to show explicitly that the pair production process 
is much more efficient in the presence of a changing-direction magnetic field, 
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I considered an analogous problem to that just treated but in the presence 
of the magneti c field [ 92]: 

(3.2.39) 

with b and Bo the same parameters as in Eq. (3.2.1). This magnetic field 
depends linearly o n t ime as B~n (t) but i t also changes direction with time. 
Also, as in [88], I have calculated only the presence probability of a pair 
with the electron and the positron in pure Landau levels and not in coher-
ent states as before. Obviously, unlike the case treated in [88], the dominant 
contribution to the presence probability is given here by the presence prob-
ability that a pair is created with both the electron and the positron in a 
pure TGS. The calculations are similar to those I have just presented but it 
is instructive to quote some steps. As in the presence of the purely rotating 
magnetic field, if I take into account only the production of a pair with the 
electron and the positron in a TGS, the pair itself can be created here only 
in the states (3.2.7). In this case the presence amplitudes corresponding to 
Eqs. (3.2.8) are given, in the asymptotic limit mt >> l, by 

lin (t) · 'ì'n,k;n+l,-k rv 'l 
e( n+ l) mb 
128Bo c~' 

lin () . ~mb 
'ì'n,k;n+l,-k t rv ""V 128Bo c~ . 

(3.2.40a) 

(3.2.40b) 

By using the previous amplitudes, I obtain the total presence probability in 
the form 

(3.2.41) 

where I have summed on the transverse quantum number n and I have 
integrated on the longitudinal momentum k. Now, the sum on the quan-
tum number n can not be coherently extended to infinity. In fact, it must 
be stopped to a given value NJin(t) corresponding, through the eigenvalue 
equations (2.1.17d) and (2.1.18d), to the fixed value R]_M [see also [88]] 

2Nlin(t) +l 
R2 =-....:....'---:-:---

l_M eBJn(t) (3.2.42) 

with BJn(t) = JB5 + (bt) 2 . This value of R]_M must satisfy analogous 
upper limit conditions to those satisfied by R]_(ae) and R]_(ae), that is the 



52 Section 3.3 

stellar magnetic field must be approximatively uniform inside a region with 
typicallinear length R.1.M and 

Bo 
ORJ..M-B << l. 

cr 
(3.2.43) 

Also, since the dominant contribution to Pjin(t) comes from the terms with 
large n, the sum on n can be calculated approximatively by means of the 
"semiclassical" substitutions 

(3.2.44a) 

(3.2.44b) 

Finally, by perforn1ing the remaining integrai on k in Eq. (3.2.41) and by 
dividing by the total volume V = Lz'lr R'iM, I obtain the final presence 
probability per unit volume as 

(3.2.45) 

Clearly, the procedure to obtain this quantity is less rigorous than that 
used to obtain Eq. (3.2.31) because the pure TGSs are not well-localized 
states while the definition of a probability per unit volume is, in generai, 
local. Nevertheless, it can be shown that by using here the more rigorous 
procedure used in the case of a purely rotating magnetic field, the final result 
would be again Eq. (3.2.45) but with RJ..m instead of RJ..M. 

At this point, to show that the production of pairs is much more efficient 
in the presence of a changing-direction magnetic field, I divide Eq. (3.2.2) 
by Eq. (3.2.45) and, apart from numerica! factors of the order of one, I 
obtain 

(3.2.46) 

which shows, in fact, that in the strong magnetic field regime the pair pres-
ence probability is much larger in the presence of a changing-direction mag-
netic field. 

3.3 Summary and conclusions 

In this Chapter I have continued the study started in (88] about the pro-
duction of electron-positron pairs in the presence of a strong, uniform and 
slowly-varying magnetic field. 
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We had already seen in the previous Chapter that, in the presence of a 
strong magnetic field, the so-called electron and positron TGSs are "priv-
ileged" states because their energies are independent of the magnetic field 
and then are much less than the other excited Landau levels. Now, by using 
the first-order adiabatic perturbation theory, I have shown in Par. 3.1.2 that 
the time-variation of the magnetic field can be connected with some selection 
rules concerning the state in which the pair can be created [see Tab. 3.1 and 
Eq. (3.1.23)]. In particular, I have obtained that only if the direction of the 
magnetic field changes with time it is possible to create a pair with the elec-
tron and the positron both in a TGS. This fact gives the changing-direction 
magnetic field configurations a particular relevance. In other words, the 
possibility of producing pairs with the electron and the positron both in a 
TGS makes a changing-direction magnetic field much more efficient than a 
fixed-direction magnetic field from the point of view of pair production. This 
fact has been verified quantitatively by comparing the two pair presence 
probabilities per unit volume (3.2.2) and (3.2.45). Both these probabilities 
have been calculated by means of the first-order adiabatic perturbation the-
ory and in thè presence of a magnetic field with a linear dependence on 
time. But, the probability (3.2.2) refers to the fixed direction magnetic field 
(3.2.1) while the probability (3.2.45) refers to changing-direction magnetic 
field (3.2.39) and, actually, the ratio (3.2.46) shows explicitly how the pair 
presence probability in the second case is much larger than the correspond-
ing quantity calculated in the first case. 

Finally, the pair presence probability has also been calculated in the 
presence of a purely rotating magnetic field. Actually, I have calculated 
the presence probability per unit volume and unit time of a pair with the 
electron and the positron both in a coherent TGS [see Eqs. (3.2.9) and 
(3.2.10)]. These states are well spatially localized in the plane orthogonal to 
the magnetic field and this fact gave me the possibility to better understand 
the role of the nonuniform electric field induced by the rotating magnetic 
field. In particular, I ha ve shown that the pair presence probability per uni t · 
volume and unit time depends on the square of the electric field [see Eq. 
(3.2.35)]. Actually, from a physical point of view it was clear a priori that 
the prod uction of a pair would ha ve vanished in the absence of an electric 
field. Nevertheless, in this respect, Eq. (3.2.35) also shows an additional de-
pendence on B l/ Ber that ca n be interpreted as a direct effect of the presence 
of the magnetic field. 



54 Section 3.3 



Chapter 4 

Photon production in a 
strong, uniform and 
slowly-rotating magnetic 
fie l d 

Even if the results of the previous Chapter about the production of electron-
positron pairs are self consistent, I want to use them now to study some 
processes through that the electrons and the positrons created may produce 
photons. In fact, as I have said in Sect. 1.2, a possible application of my 
theoretical calculations is the study of GRBs and of their properties. In 
particular, in Sect. 4.1 I will calculate the energy spectrum per unit time of 
the photons produced through the annihilation of already created electrons 
and positrons [93]. Analogously, in Sect. 4.2 I will evaluate the energy spec-
trum of the photons emitted as synchrotron radiation by already created 
electrons an d positrons [94]. Sin ce one of the conclusions of the previous 
Chapter was that a rotating magnetic field primes very efficient mechanisms 
of electron-positron pair production, I will consider in this Chapter only the 
prod uction of photons in the presence of this kind of magneti c fie l d. Fi-
nally, I have also calculated in [93] the energy spectrum of photons emitted 
directly from vacuum in the presence of the same magnetic field configura-
tion. Nevertheless, this photon production mechanism is very inefficient and 
I will not report here ali the calculations but only some intermediate steps 
and the final photon spectrum (Sect. 4.3). 

4.1 Photon production through pairs annihilation 

Before starting the calculations I want to make a generai observation con-
cerning the approximations made about the spatiotemporal structure of the 
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magneti c fields I deal with. As i t will be clear, this observation is inde-
pendent of the photon production process at hand. In fact, asI have just 
mentioned, I will consider here the production of photons in the presence of 
the already introduced strong, uniform and slowly-rotating magnetic field 
given in Eq. (3.2.3) and that, for the sake of clarity, I write again: 

( 4.1.1) 

Now, in the previous Chapter I was allowed to assume the magnetar mag-
netic field as uniform (in the production region) and slowly-varying ( during 
the production process) because the nonvanishing mass m of the electron 
(positron) provi d ed a microscopi c length an d t ime scale given by the Com p-
ton length À = l/m. Instead, here I will deal with photons that are massless 
then, in order to keep the previous approximations, I have to assume ex-
plicitly to restrict my attention to photons with energies w such that n<< w. 
Actually, this strong inequality does not constraint at all the following results 
from a physical point of view. In fact, we have seen that in the astrophysical 
context under consideration n rv l s-1 while the energies of the photons in a 
GRB pulse are typically larger than 10-2 MeV corresponding to an angular 
frequency of 1.6 x 1019 s-1. 

Now, in Sect. 3.2 I have shown that pairs can be created in the presence 
of a strong, uniform and slowly-rotating magnetic field with the electron and 
the positron both in a coherent TGS. By using the same technique sketched 
a t the end of the previous Chapter, one can also obtain the probability per 
uni t volume t ha t a pair is present at time t with the electron (positron) in 
any pure TGS with longitudinal momentum between k and k + dk ( -k and 
-k- dk). By indicating this probability as f(k, t)dk it can easily be shown 
t ha t 

l eBr 2 2 . 2 
[ ]

3 

f(k, t) = 27r2 4s2 (k) m (nRl_M) s1n s(k)t ( 4.1.2) 

with s(k) = v'm2 + k2 . It is worth pointing out the dependence of f(k, t) on 
s-6 (k). In fact, this means that in the physical situation under consideration 
the production of high-energy electrons and positrons is strongly suppressed 
and this fact will also affect the production of high energetic photons. 

Now, in Appendix BI show that the quantity f(k, t)dk can be interpreted 
as the mean number of electrons or, symmetrically, positrons per uni t volume 
present at time t with a longitudinal momentum between k and k+dk. This 
allows me to use the distribution (4.1.2) to calculate the annihilation photon 
spectrum per unit time, i. e. the number of photons per unit energy, unit 
volume and unit time that are produced as a consequence ofthe annihilations 
of the electrons and of the positrons previously created, by using the formula 
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[95, 87] 

dN(ann)(w,t) = Jdkdk'da-(k,k',w)_(k k')J(k t)f(k' t) 
dwdV dt dw v ' ' ' · 

( 4.1.3) 

In this formula, da-(k, k', w)jdw is the cross section per unit of photon energy 
ofthe pair annihilation into two photons process and v(k, k') is the fiux factor 
of the colliding particles defined as: 

v(k, k') = J(k, k')v (4.1.4) 

where J(k, k') is the fiux density of the colliding particles and V is the quan-
tization volume. I will give below a more precise definition of the quantity 
da(k, k',w)jdw and its explicit form. At the moment, I observe that this 
picture is already approximated. In fact, I am considering the distribution 
f(k, t) as a given function while its time dependence is affected by the anni-
hilation process itself. Nevertheless, I neglect this fact for the moment and 
I will deal with it at the end of this Section. 

In order to calculate the quantity da-(k, k', w)/dw, I start by writing the 
cross section da of the annihilation of an electron with fourmomentum (c, k) 
an d spin s an d a positron with fourmomentum ( c1

, k') an d spin s' into two 
photons with fourmomenta (w, q) an d (w', q') an d polarizations À an d À1 

respectively. Actually, the process of pair annihilation will take place in the 
magnetic field, which therefore affects all the dynamical processes. However, 
in computing the photon production rate I consider that the main dynamical 
effect of the magnetic field is the pair production. The rest of the process 
will be therefore calculated neglecting the effects of the magnetic field both 
on the annihilation process and on the photon final states. Following this 
approximation, I need the cross section da- of the pair annihilation into 
two photons process in the vacuum. This quantity may be found in many 
textbooks and I will quote (in my notation) Eq. (33.2) in [95]: 

4?T2a~m 
1

_ l2dqdq' 1 1 1 1 ( ) 
da= ww'v(k, k') uQv (21r)2 5(k + k -q- q )5(c +c -w- w) 4.1.5 

where uQv is the annihilation matrix element and aem = e2 /( 47r) the fine-
structure constant. In particular, even if the electrons and the positrons in 
the present case have a preferential direction of the spin [see Eq. (3.2.7)], 
I will also neglect this aspect and I will use the cross section summed over 
the photon polarizations and averaged over the electron and positron spins. 
Eq. ( 4.1.5) remains unchanged but the quantity luQvl 2 must be replaced 
by [95] 

"luQvl 2 = --
1 

[4 (.!. + _!_)
2

- 4 (.!. + _!_) -(~+x')] (4.1.6) L.....t 2cc1 x x' x x' x' x 
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with 

2w 
x= - 2 (s- k cosB), m 

2w 
x'= - 2 (s'- k' cos B) 

m 

(4.1.7a) 

(4.1.7b) 

where I have assumed that the colliding particles have momenta along the z 
axis and that B is the angle between the photon momentum q and this axis 
( this means t ha t k an d k' can be positive or negative) .1 

By using the distribution (4.1.2) in Eq. (4.1.3), I take into account, 
from a kinematical point of view, the anisotropy induced by the presence 
of the magnetic field. From the dynamical point of view, I should take into 
account this anisotropy by substituting the matrix element uQv with the 
corresponding one calculated in the presence of the strong magnetic field 
B/ = (0, O, B7 ). The calculation is very complicateci and it involves the use 
of the Schwinger propagator [5], i. e. the electron propagator in the presence 
of a constant and uniform magnetic field. In Appendix C I will analyze the 
matrix element so calculated in order to give the correction in d uced by the 
use of the Schwinger propagator and to find the physical conditions in which 
the previous approximated treatment is correct. 

Now, the threedimensional <5 function in Eq. ( 4.1.5) can be exploited to 
perform the integrai on q'. Also, sin ce I need the cross section as a function 
of the energy of o ne of the photons created ( the other being fixed by the 
energy <5 function), I integrate the cross section itself with respect to the 
angular variables. The result is 

dCJ(k,k',w) _ wa~m 11 d( B) l: luQvl 2 s.( 1 _ _ ') 
df.J.J - v(k, k') -l cos w' u c+ c w w 7r 

( 4.1.8) 

where the integrai on the azimuthal angle gives a factor 7r to take into 
account that the two final photons are indistinguishable and where 

w'= lq'l = lk + k'- ql = yf(k + k') 2 + w2 - 2w(k + k') cosB. ( 4.1.9) 

By substituting this expression of w' in the argument of the <5 function in 
E q. ( 4.1. 8) I can perform the integrai o n cos B an d the fin al result is 

da(k, k', w) = 7rQ~m l: luQvl 2
1cos0=cos Oo 19 (1 _ l B l) 

dw v(k, k') lk + k'l cos o (4.1.10) 

where 19( x) is the step function and where 

(k + k')2 + w2 - (s +s'- w) 2 

cos Bo = 2w( k + k') ( 4.1.11) 

1Since the time t in Eq. (4.1.3) is fixed, I assume to work in a reference system which 
has the z axis along the instantaneous direction of the magnetic field B 7 (t). 
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At this point I have all the ingredients to calculate the photon energy 
spectrum per unit time by means of Eq. (4.1.3).2 The region of integration 
in Eq. ( 4.1.3) can be divided into the four sectors: 

k 2 o, k' 2 o, 
k 2 O,k' <O, 
k < O,k' 2 O, 
k <o, k' <o 

(4.1.12a) 
( 4.1.12b) 
( 4.1.12c) 
( 4.1.12d) 

and it can easily be seen that the integrals in the sectors I and II are equal 
to those in the sectors IV and III respectively. Also, the time dependence of 
the spectrum ( 4.1.3) is carried by the oscillating functions in the distribution 
f(k, t) [see Eq. (4.1.2)]. Since I am interested in macroscopic times such 
that mt >> l, I can calculate directly the mean value of Eq. ( 4.1.3) for 
large times by means of the substitutions (sin2 s(k)t) = (sin2 s(k')t) rv 1/2. 
Finally, by using the adimensional variables rJ = m/s = m/s(k) and rJ1 = 
m/s'= mjs(k') that vary in the unit square, Eq. (4.1.3) can be written in 
the form 

l dN(ann)(w, t)) rv a;mm3 (0.Rl_M)4 (Br )6 
\ d!..udV dt 27r3 27r Ber 

x { 1 
{

1 drJdrJ' M(rJ, rJ1
, w,+ l) +M( rJ, rJ1

, w, -l) 
J o J o v' (l - rJ2) (l - rJ'2) 

(4.1.13) 

where w= w/m and 

M(rJ,rJ1,w,() ( rJrJ') 6 l 

l 1
~(1-lcosBo(rJ,rJ ,w,()l) 

rJv'l- rJ'2 + (rJ'~ 
x { x(rJ, rJ1

, w,() + x'(rJ, rJ1
, w,() 

x'(rJ, rJ', w,() x(rJ, rJ', w,() 

[ 
l l ]

2 

-
4 

x(rJ, rJ', w,() + x'(rJ, rJ', w,() 

+ 4 [x('l/,'1/~,w,() + >1('1/,;,,w,()l} 
(4.1.14) 

with 

( 4.1.15a) 

2 Note that the integrai in Eq. (4.1.3) seems to be divergent because of the factor 
1/lk+k'l in Eq. ( 4.1.10), but, actually, the constraint l cos Bo l :::; l prevents this divergence. 
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(4.1.15b) 

(4.1.15c) 

The analytical integrations in Eq. ( 4.1.13) are very di:fficult because the 
trivial condition l cos Bo ( TJ, ry', w, ()l :::;; l is a complicateci condition o n the 
integration domain over TJ and ry', so I shall present the result of a numerica! 
calculation (see Fig. 4.1). Although, the quantity (dN(ann)(w, t)/(dwdVdt)) 

102 ~----~---~---------~-------~--------------~ 

10 
l 

0.1 
w-2 
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w-4 
w-5 
lQ-6 

10-7 

lQ-8 
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lQ-12 

10-13.+------;------;--__,_.,..----r---r-r-;-----__,_-;--;--r---r-r-;-----;----+-__,_-;-;--;--;-H 
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w(MeV) 

Figure 4.1: Photon spectrum per unit time (dN(ann)(w, t)j(dwdVdt)) in 
arbitrary units. The dotted curve represents a function proportional to 

-3 w . 

is a spectrum per unit tilne I want to compare it at least qualitatively with 
the two typical GRBs energy spectra shown in Fig. 1.4. Unfortunately, 
the shape of the theoretical spectrum ( 4.1.13) results also qualitatively very 
different from those of GRBs (see Fig. 1.4) and then I can conclude that the 
pair annihilation mechanism can not be the dominant one giving rise to a 
GRB. Nevertheless, similarly to experimental GRBs energy spectra, it shows 
a break energy w~ann) of the order of 0.1 MeV (see the end of Par. 1.2.1). 
Actually, the value of wiann) is precisely around the value 0.51 MeV of the 
electron mass and this result can be interpreted in the following way. In 
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the center-of-momentum system the pair will yield two photons with equal 
energy and thus with w ~ m. In order to get a soft photon one needs a 
large boost of the pair system and this would unavoidably result in a very 
energetic electron (or positron), but the distribution f(k, t) decreases rapidly 
for large k and so this process has small probability [see Eq. ( 4.1.2) ]. For the 
same reason the production of very energetic photons is also unlikely and 
the high-energy region of the spectrum in Fig. 4.1 decreases more rapidly 
than w-3 . I point out that the comparison with a function proportional 
to w-3 is motivated because, as we have seen at the end of Par. 1.2.1, 
the high-energy part of the experimental GRBs spectra are well fitted by a 
function proportional to w-!3 with f3 ~ 2-3. Finally, I want to observe that 
the sharpness of the peak at 0.51 MeV is also due to the fact that only the 
TGSs have been put into the electron and positron distributions f(k, t). In 
fact, the other possible states correspond to excited Landau levels and the 
energy of the electron (or of the positron) in such states has in the center-
of-momentum system a minimum which is higher than m. Consequently, 
taking into account these states would make the maximum in Fig. 4.1 less 
sharp. 

AsI have mentioned before, the production of photons through pair an-
nihilation has as a consequence, of course, the depletion of the electron and 
positron populations. In fact, even if the two processes of pair production 
and pair annihilation are not disjoint in time, I performed the calculation 
keeping them separated because, in the presence of a purely rotating mag-
netic field, the electron (positron) population does not grow continuously but 
it reaches a stationary density with superimposed rapid fluctuations [see Eq. 
( 4.1. 2) ]. N ow, the electron population is the same as the positron popula-
tion an d this equality is clearly kept by the annihilation process. However, 
the rate of change of these populations depends in generai on k and the 
time evolution may be very complicated. 3 An overall indication of the tin1e 
variation may be obtained by assuming that the momentum distributions 
of the electron and positron populations do not depend on time. In this 
approximation the electron (positron) distribution, that I also indicate as 
f(k, t), can be written in the factorized form 

f(k, t)= K(k)T(t). (4.1.16) 

Now, it can always assumed that J dkK(k) = l in such a way the function 
T( t) is given by 

T( t) = J dkf(k, t). (4.1.17) 

Also, I observe that the photons production rate is twice with respect to the 
rate of the electrons annihilation, then, introducing the quantity O"(k, k') = 

3 For example, in this case one should also take into account the scattering processes 
among the electrons and the positrons that do not change the number of particles but 
that do change their momenta. 
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f dwdCJ ( k, k', w)/ dw that is the t o tal cross section of the annihilation of an 
electron and a positron with energies s(k) and s(k') respectively into two 
photons, I get from Eq. ( 4.1.3) 

T(t) = j dk8tf(k, t)=-~ j dw dN~:~~, t) = -s2T2(t) ( 4.1.18) 

with 
s2 = ~ J dkdk' <T(k, k')V( k, k1)K(k)K(k1

). (4.1.19) 

The solution of the differential equation ( 4.1.18) is 

T() To 
t = l+ s2Tot ( 4.1.20) 

with To = T(O), so I can conclude that the photon production rate -2T(t) 
decreases at large t as t-2 . It is not difficult to verify that, in the same 
hypotheses, if I started with unbalanced populations (more electrons t han 
positrons, or the opposite), then the photons production rate would show 
an exponential decay with time. 

4.2 Photon production as synchrotron emission 

As I have said in Par. 1.2.2, there are strong evidences that the photons 
forming a GRB are emitted as synchrotron radiation by the electrons and 
the positrons in the fireball. I have also said that the fact that the gamma-
ray radiation of the GRBs is high linearly polarized leads to think that the 
magnetic field in which the radiation itself is emitted is produced by the 
centrai engine of the GRB that is by a magnetar or a black hole. For this 
reason, I want to calculate here the energy spectrum of the photons emitted 
as synchrotron radiation by electrons and positrons in the presence of the 
rotating magnetic field ( 4.1.1) [94]. As in the previous Section, the choice 
of the rotating field configuration ensures an easier mathematical tre~tment 
but it is also justified because the production of electron-positron pairs (and 
then of photons) is much more efficient with respect to the production in the 
presence of a magnetic field varying only in strength. By contrast, in the case 
of photon production through pair annihilation I have used the electron and 
positron distributions previously calculated to obtain, by means of the pair 
annihilation cross section, the photon spectrum per unit time. In this case 
it is easier to start from the beginning and to calculate the matrix elements 
corresponding to the whole process "pair production+photon emission". 

4.2.1 Theoretical model 

By considering the process I want to study, a good theoretical starting point 
is the Lagrangean density ~ of QED in the presence of an external electro-
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magnetic field. If Ara(t, r) = [O, -Ar(t)] with 

l 
A 1(t, r) = - 2[r x B 1(t)] 
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(4.2.1) 

is the fourpotential describing the external rotating magnetic field then 

(4.2.2) 

where the radiation field Aa(t,r) = [V(t,r),-A(t,r)] is assumed in the 
Coulomb gauge 

and where 

V( t, r) =O, 
8·A(t,r)=0 

(4.2.3a) 
(4.2.3b) 

( 4.2.4) 

In Eq. (4.2.2) the two terms proportional to Fraf3F/13 and to F!a/3Faf3 with 
Fraf3(t, r) = 8aA713(t, r) - 8/3A!a(t, r) have been omitted because they do 
not give any significant contribution to the equations of motion of the fields 
'l/;( t, r) and A( t, r) = [A0 (t, r), ... , A3 (t, r)] and to the process I want to 
study. 

Now, the Lagrangean density (4.2.2) is not in the most suitable form 
for the physical scenario I want to describe. In fact, as it stands it would 
be suitable for dealing with a weak external magnetic field because the 
usual perturbation theory could be used, while I am dealing with a strong 
magnetic field. Nevertheless, we also know that the perturbation induced 
by the macroscopic magneti c field ( 4.1.1) can be assumed to be adiabatic. 
For this reason, I first perform the time-dependent rotation 

r' (t) = [x' (t), y' (t), z' (t)] = (x, y cos nt- z sin nt, y sin Ot+z cos nt). ( 4.2.5) 

As a consequence, the spinor field 'lj;(t,r) and the fourvector field A(t,r) 
transform as 

'l/;1 (t, r' (t)) = exp (-i ~x nt) 'l/;( t, r)' 

A' (t, r' (t)) = exp ( -iSxflt) A( t, r) 

where the matrices O"x and Bx are given by 

O"x = (~ ~ ~ ~) ' 

o o l o 

o 
o 
o 
-i O~). 

( 4.2.6a) 

(4.2.6b) 

(4.2.7) 
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I point out that, although CJx and Bx are two 4 x 4 matrices, they act on 
two different spaces: the first one acts on the spinor space and the second 
one acts on the fourvector space labeled by the Lorentz indices {0, ... , 3}. 

Now, by using the equality 

( 
.CJx ) (fU) . . (fU) exp -z2 ru = cos T - 'lCJx s1n 2 ( 4.2.8) 

and by exploiting the usual commutation rules among the Dirac 1 matrices, 
it can easily be shown that 

(4.2.9) 

with 1 = ( 1°, ... , 13 ). This equation is nothing but the mathematical ex-
pression of the fact that the current density rl/J( t, r )1'l/;( t, r) transforms under 
the rotation (4.2.5) as a fourvector [see Eq. (4.2.6b)]: 

rl/J1'l/J = {J' exp (-i ~x fU) 1 exp (i CJ; fU) 'l/;1 = exp ( iSxfU) i{;' 1'l/J' ( 4.2.10) 

where, from now on, the "primed" fields are always intended to be calculated 
a t the "primed" coordinates r' (t). 

These previous equations can be exploited to rewrite the Lagrangean 
density ( 4.2.2) in terms of the primed variables and fields. In particular, it 
is evident from Eqs. (4.2.6b) and (4.2.10) that 

(4.2.11) 

The transformation of the terms involving the external magnetic field are 
more complicated. In fact, from Eqs. (4.1.1), (4.2.1) and (4.2.9) I obtain 

ifJ1a'l/JAra(t,r) = B; [ifJ'11'l/;'y'(t)- rl/J'12'l/J'x'(t)] = rl/J'1a'l/J'A(a(r'(t)) 
(4.2.12) 

where I have introduced the fourpotential A(a(r'(t)) = [0, -A((r'(t))] with 
A((r'(t)) = -[r'(t) x B(]/2 and B( = (0, O, Br). 

Now, I want to show in detail how the terms containing derivatives of 
the fields in the Lagrangean density ( 4.2.2) transform. I first transform 
separately the time derivatives 8t'l/;(t, r) and 8tA(t, r). From Eqs. (4.2.6) 
and by reminding that the variables r'(t) depend on time [see Eq. (4.2.5)], 
I have 

8t'l/;(t,r) =exp (i~xru) [inJ1112)''l/J'(t,r'(t)) +8t'l/J'(t,r'(t))], (4.2.13a) 

8tA(t,r) =exp(iSxflt) [if2J:~ 1)'A'(t,r'(t)) +8tA'(t,r'(t))]. (4.2.13b) 
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where I have introduced the x components 

:J(l/2)1 = .C' + O"x 
x x 2' 
--r(1)1 = .C' + s '-'x x x 
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( 4.2.14a) 

(4.2.14b) 

of the one-particle electron (positron) and photon total angular momentum 
operators respectively. On the one hand, by means of Eq. ( 4.2.13a) it can 
be seen that 

7frya8a~ = 7[/ exp (-i ~x nt) 1°80 [ exp (i a; nt) ~'] + 7[;'1 1 8~ ~' 
+ 7[;' ( 1 2 cos nt + 1 3 sin nt) ( cos nt 8~ +sin nt 8~) ~l 
+i{;' ( -12 sin nt + 13 cos nt) (-sin nt a~ + cos nt 8~) ~l 

= 7[;'1a8~~' +in{;' lo J~1/2)'~', 
(4.2.15) 

where, for notational simplicity, I do not indicate the dependence on time of 
the derivatives with respect to the primed coordinates. On the other hand, 
Eq. (4.2.13b) can be used to see how the free radiation field Lagrangean 
density in Eq. ( 4.2.2) transforms. Firstly, I write it in the more useful 
noncovariant form 

l o:f3 l [ 2 2] -4Faf3F = 2 (8tA) -(a x A) . (4.2.16) 

Now, it is evident that 

(a x A) 2 = (a' x A') 2 
. (4.2.17) 

Also, in the Coulomb gauge where the scalar potential vanishes 1dentically 
one has that (8tA)2 = -(8tAa)(8tAa), then, by using Eq. (4.2.13b), I 
obtain 

(4.2.18) 

where, being in my approximations the rotational frequency n a small quan-
tity, I have neglected the terms proportional to n2 . By substituting Eqs. 
(4.2.17) and (4.2.18) in Eq. (4.2.16) I can write it as 

- ~ F Faf3 = - ~ f' F'af3 - in(a A' )J,(1)' A'o: + O(n2 ) 4 o:f3 4 o:f3 t Q x (4.2.19) 

with 
F~13 (t,r'(t)) = 8~A~(t,r'(t))- 8~A~(t,r'(t)). ( 4.2.20) 

By collecting Eqs. (4.2.11), (4.2.12), (4.2.15) and (4.2.19) and by per-
forming the remaining trivial transformation of the mass term in the. La-
grangean density ( 4.2.2), it can be written in terms of the primed variables 
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and fields as 

2' = ;jJ' {la [io~+ eA(a(r'(t)) + eA~J -m}~'- ~F~13 F'aJ3 
+ iO;jJ' lo :J~l/2)' ~' - iO( 8tA~):J~l)t A'a + O( 02) 

Section 4.2 

( 4.2.21) 

or, by removing the now useless prime an d the t ime dependence o n r' (t), 4 

as 
( 4.2.22) 

with 
(4.2.23) 

an d 

2} = e;jJ'ra~t A~+ iO;jJ'r0 :J~ 1/2)'lj/- i0(8tA~):J~1 ) A'a + 0(02). (4.2.24) 

In this way the originai time-dependent Lagrangean density (4.2.2) has been 
transformed into an effective Lagrangean density that does not depend ex-
plicitly on time and that embodies the effects of the rotation of the ex-
ternal magnetic field in the interaction terms proportional to its rotational 
frequency n. I note that the Lagrangean density ( 4.2.22) is just the La-
grangean density of QED in the presence of the external static magnetic 
field B( = (0, O, B1 ) plus other extra interaction terms that are propor-
tional ton (orto 0 2).5 

In order to build the Hamiltonian density I calculate now the momenta 
conjugated to the Dirac and to the radiation field. From Eqs. ( 4.2.22)-
( 4.2.24) I obtain 

, ( ) _ a2:ff _ .,,.'t( ) 
1r1/J t, r = o(Bt~') - z'+' t, r , 

' ( ) - a2:ff - ~ '( ) ·o q(l)A'( ) 
1r A' t, r = o(BtA') -utA t, r + ZHJx t, r 

and the Hamiltonian density can be written in the form 

"M'LJI - l ~ r~ll l ~ A' CLJI "M'LJI "M'LJI 
JC..eff = 7r 'lj;ut '+' + 1r A' · ut - .Zeff = Jc..o + Jc.. I 

with 

(4.2.25a) 

(4.2.25b) 

(4.2.26) 

Jed = ~'t {o · [ -i8 + e A( ( r) J + ;3m} ~' + ~ [ -rr~, + ( 8 x A') 2] ( 4. 2. 27) 

4Tbe elirnination of tbe tirne-dependence on t be variables r' (t) can be safely done 
because it does not cbange tbe equation of rnotion of tbe radiation field. In fact, on 
tbe one band, being tbe transforrnation r'(t) = r'(t,r) a rotation, tben dr= dr'(t). On 
tbe otber band, tbe integrai of tbe Lagrangean density 2' on r' (t) to obtain tbe total 
Lagrangean (and tben tbe action) extends over tbe wbole space and tbe coordinates r'(t) 
are durnb variables. 

5 As in tbe rest of tbe tbesis, I continue to use tbe "prime" to indicate all tbe fields and 
tbe related quantities wben tbe external rnagnetic field lies in tbe z direction. 
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an d 

.Yef = -e'I/J'ta'I/J'. A'+ ifJ'Ij;'tJ1112)'lj;'- ifJ1r~,. J11)A' + O(n2). (4.2.28) 

N ow, since the perturbation ind uced by the magnetic field B 1 (t) is adi-
abatic, I can consider all the terms in the interaction Hamiltonian density 
(4.2.28) as small perturbations of the free Hamiltonian density (4.2.27). At 
this point, I can use the machinery of the ordinary perturbation theory to 
calculate the matrix elements corresponding to the process under study: 
the emission of photons by the electrons and the positrons created in the 
strong slowly-rotating magneti c fie l d B 1 (t). By neglecting all the radiati ve 
corrections and taking into account only the tree-level contributions, the 
Feynman diagrams accounting for the mentioned process are those shown 
in Fig. 4.2 where the lower vertices actually represent the interaction with 
the time derivative of the external magnetic field and correspond to the 
term ifJ'Ij;'tJ~ 1 /2)'1/J' in .Yef. Now, as in ordinary QED, in order to calculate 

(a) (b) 

Figure 4.2: Tree-level Feynman diagrams of the photon emission by an elec-
tron [p art (a)] or by a positron [p art (b)] created in the prese n ce of the strong, 
uniform and slowly-rotating magnetic field B 1(t) given in Eq. (4.1.1). The 
thick fermion lines indicate that the calculations of the corresponding S-
matrix elements have been performed by using the electron and positron 
one-particle states in the presence of the magnetic field. 

the S-matrix elements corresponding to the Feynman diagrams in Fig. 4.2 
I quantize the Dirac field and the photon field in the interaction picture. 
Since, asI have said, the Lagrangean density ( 4.2.23) is the free Lagrangean 
density of QED in the presence of a uniform and static magnetic field in the 
z direction with strength B l , we already know t ha t the Dirac field can be 
expanded as [see Eqs. (3.1.7) and (2.1.23)] 

'l/;'(t,r) =L [cjuj(r)exp(-iwjt) +d}vj(r)exp(iwjt)J. 
j 

( 4.2.29) 
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Now, we have seen in the previous Chapter that pairs are much more 
likely created in the presence of a strong and slowly-rotating magnetic field 
with both the electron and the positron in a TGS. Analogously, I assume 
here that all the electrons and the positrons entering the game are in TGSs 
[see Eqs. (2.1.35)]. In the same approximation I sum only on the electron 
and positron TGSs to build the propagator G' (t, r, t', r') that is (96] 

iG' (t, r, t', r') = L { t9( t- t')u~,k(r )u~,k(r') exp[-isk(t- t')] 
n,k (4.2.30) 

- t9(t'- t)v~ k(r)ii~ k(r') exp[isk(t- t')]} 
' ' 

where the coordinates r' have obviously nothing to do with those introduced 
in Eq. ( 4.2.5) that, on the other hand, depended on time. 

I pass now to the second quantization of the radiation field. The presence 
in the interaction Lagrangean density ( 4.2.24) of terms containing the time 
derivative of the radiation field would make the quantization procedure very 
complicated. Nevertheless, I observe that 

l. these additional terms are proportional to the rotational frequency n; 

2. the matrix elements that I will calculate are already proportional ton 
through the factor corresponding in Fig. 4. 2 to the interaction vertex 
with the time derivative of the external magnetic field. 

For these reasons, since I am not interested in higher order corrections in n, 
all the other factors in the matrix elements can be evaluated neglecting the 
interaction with the external field. In this way, I can quantize the radiation 
field as it were free and then I can indicate the vector radiation field simply 
as A( t, r) and I have only to expand it into the usual plane-wave basis as 

A(t,r) =L~ { uq,A exp[-i(wt- q· r)] +aL exp[i(wt- q· r)]} 
q,>. 

( 4.2.31) 
where V is the quantization volume, w= lql is the photon energy and eq,>. 
with À = l, 2 are the polarization versors [97]. 

At this point I have all the quantities I need to calculate the matrix 
elements corresponding to the Feynman diagrams in Fig. 4.2 and this is the 
subject of the next Paragraph. 

4.2.2 Calculation of the photon energy spectrum 

By looking at the interaction Hamiltonian density Yef it is clear that if 
the final state is the state le-e+ì) = lko,no;kb,n~;q,-\) (the initial state is 
obviously the vacuum IO)) then the matrix element at time t corresponding 
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to the Feynman diagram in Fig. 4.2(a) can be written as6 

s~ n k' n' q À (t) = J dr' lt dt' J dr" {t dt" 
o, o, 0' O• ' -00 lo 

x u'l k (r') exp(ick0 t1
) e~>. exp[i(wt'- q· r')] no, o 2Vw 
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x iG'(t' r' t" r")iO·-,p rr(l/2)" v' (r") exp(is 't") 
' ' ' 1 v x n~,kb k0 

(4.2.32) 

where I have pointed out that, while the electromagnetic interaction between 
the Dirac field and the radiation field is always present, the external field 
starts rotating a t an arbitrary finite t ime t" I called zero. 7 

Now, the term in Eq. (4.2.32) corresponding to the lower vertex in Fig. 
4.2(a) will be calculated by means of the first-order adiabatic perturbation 
theory. In order to do this, I use the expression ( 4.2.30) of the electron 
propagator to write the previous matrix element in the more useful form 

s~o,no,kb,n~,q,À (t) 
e(e .x) jt 

=- JWwz L dt' exp[i(Eko +w- Ek)t'] 
2Vw k -oo n, 

x j dr' un't k (r')azU~ k(r') exp( -iq · r') o, o , 

t' 
X r dt"exp[i(Ek' +sk)t"]fdr"unt k(t",r")8t"Vn' k'(t",r") lo o , o• o 

e(e .x) jt + JWwz L dt' exp[i(Eko +w+ Ek)t'] 
2Vw k -oo n, 

x j dr' un't k (r')azv~ k(r') exp( -iq · r') o, o , 

x {t dt" exp[i( Ek' - Ek)t"] j dr" v t k( t", r")8t"Vn' k' (t", r") lt' o n, o• o 
(4.2.33) 

where I used the fact that the TGSs are eigenstates of eT z in such a way ax 
and ay can not couple two of them and where I introduced the "rotating" 
states [see Eqs. (2.1.46)) 

( 4.2.34a) 
6The Feynman diagram in Fig. 4.2(b) represents the emission of the photon by a 

positron but this process can be taken into account by simply multiplying by two the final 
spectrum of the photons ernitted only by an electron. 

7I rernind (see Sects. 1.2.3 and 3.1.1) that the ernission of a GRB is supposed to 
happen during the collapse of a rnagnetar into a black hole or during the forrnation of 
the rnagnetar itself. In this framework the instant t" = O in Eq. (4.2.32) indicates the 
beginning of the magnetar collapse or of its forrnation. 
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Vn,k(t, r) = exp(ifltJPI2))v~,k(r) (4.2.34b) 

that are the instantaneous eigenstates at time t of the one-particle Hamil-
tonian 

1-l(t) =o:· [P+ eA,(t, r)] + f3m ( 4.2.35) 

with A7(t, r) given in Eq. (4.2.1). In this way, by applying Eq. (2.2.8b) of 
the adiabatic perturbation theory I obtain 

!d " t (t" ")a (t" ") _ jd ,u~,k(t",r")H(t")vnb,kb(t",r") r un k , r t"Vnl kl , r -- r , 
, o• o Sk1 + ék o 

(4.2.36a) 

J J v t (t" r")ii(t")v (t'' r") 
d Il t (t" ")8 (t" ") _ d 11 n,k ' n~,kb ' r v n k , r t"Vnl kl , r - - r . 

' o• o ckl - ék o 
(4.2.36b) 

These kinds of matrix elements can be easily calculated and the result is 

J dr" u t (t". r")8 "v 1 1 (t" r") = - eflB 1 j dr" u't ( r") x" az v' 1 1 ( r") 
n,k , t no,ko ' ék + ckl n,k 2 no,ko ' 

o 
(4.2.37a) 

J d " t ( " ")8 ( " ") eflB! J d " 't ( ") x" az ' ( ") r v n k t , r t"Vnl kl t , r =- r v n k r --vn1 kl r . , o• o sk1 _ ék , 2 o• o 
o 

(4.2.37b) 

I observe that in both these matrix elements the integrai on the z variable 
gives a conservation of the longitudinal momentum and then of the energy. 
This does not cause any problem in the first matrix element, while the second 
one diverges when k = kb. For this reason, this particular matrix element 
will be calculated by writing the left-hand side of Eq. ( 4.2.37b) as [see Eq. 
(4.2.34b)] 

J d Il t (t" ")8 ( 11 ") _ ·o J d 11 1t ( ") q(l/2)11 1 ( ") r u kl , r t"Vnl kl t , r - -ZH r u kl r '-'x Vn1 kl r . n, o o• o n, o O• o 
( 4.2.38) 

By substituting the explicit expression of the one-particle electron total an-
gular momentum (4.2.14a), I observe that, on the one hand, the term z"P; 
does not contribute because, by performing the integrai on z" from- Lz/2 to 
Lz/2, it vanishes and, on the other hand, the term (Jx/2 does not contribute 
either because the TGSs are eigenstates of (Jz. As a result, we have 

J d Il t (t" ")8 ( Il ") {Ì J d Il 't ( ") "8 l ( ") r v kl , r t"Vnl kl t , r = -H, r v kl r y z"Vnl kl r . n, o o• o n, o o• o 
( 4.2.39) 
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At this point, if I substitute the expressions (2.1.35) of the TGSs I obtain 
that the matrix elements different from zero are the following ones: 

id " t (" ") (" ") m!ì JeB7n~ r u '-l-k' t ,r Ot"Vn' k' t ,r = - 2 --, 
no ' o o' o 4c: k' 2 

( 4.2.40a) 
o 

id " t (t" ")8 ( 11 ") mn eB7(n~ +l) r u '+1-k' ,r t"Vn' k' t ,r = -2- 2 
no ' o o' o 4c: k' 

(4.2.40b) 
o 

i " t ( " ") ( Il ") l «f~ dr vn'-lk' t ,r ()t''Vn' k' t ,r = k0n -B , o , o 0 ' 0 2e 7 
( 4.2.40c) 

i d " t (t" ")8 ( , ") k' 0 n~ + l r v , +l k' , r t"Vn' k' t , r = - oH --. no , o o• o 2eB 7 ( 4.2.40d) 

By inserting the previous matrix elements in Eq. ( 4.2.33) and by omit-
ting the now useless in d ex "O" on ko, kb, no an d n~, I obtain the two tran-
sition amplitudes 

s'( l) (t) k,n,k',n',q,>.. 

me!ì( eq,>.)z J eB 7n' i 1 ,t , , , ( . ') 
=- Be:~, ~ dr un,k(r )azUn'-l,-k'(r) exp -zq · r 

t ~ 

X 1 dt' exp(i(c:k- C:k' + w)t1
] r dt11 exp(2ick't") 

-oo lo 
enk'(eq,>..)z ~i l lt l l l . ') + 2 y ~ dr un,k(r )azVn'-l,k'(r) exp( -zq · r 

x jt dt' exp[i(c:k + c:k' + w)t'] ft dt" 
-oo h' 

(4.2.41) 

an d 

s'(2) (t) k,n,k',n',q,>.. 

men( eq,>..)z eB7(n' +l) i , 't , , , . , 
Be:~, V w dr un,k(r )azUn'+l,-k'(r ) exp( -zq · r) 

lt lt' x dt' exp[i( C:k - c:k' +w )t'] dt" exp(2ic:kd") 
-oo O 

enk' (e q,>..) z n' + l i d l lt ( ') l ( ') ( . ') 

2 B V r un k r azvn'+l k' r exp -zq · r 
e 7 w ' ' 

x jt dt' exp[i(c:k + C:k' + w)t'] {t dt". 
-oo lt' 

(4.2.42) 
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Now, by using the expressions (2.1.35) of the TGSs it is easy to show that 

j dr'u~,k(r')azU~'±!,-k'(r') exp( -iq · r') 

(c k + m) (c k' + m) ( k k' ) I' 8 4Ekék' Ek +m - ék' +m n,n'±l,qx,qy k+qz+k',O, 

(4.2.43) 

j dr'u~,k(r')azv~'±!,k'(r') exp( -iq · r') 

(c k + m) (c k' + m) (l k k' ) I' 8 4Ekék' + Ek +m Ek' +m n,n'±l,qx,qy k+qz+k',O 

( 4.2.44) 

w h ere 

I~,n',q.,q• = j dxdyO;:(x, y)IJ'n,(x, y) exp[-i(qxx + QyY)] (4.2.45) 

with the functions B~(x, y) given in Eq. (2.1.36). 
I proceed now by calculating the time integrals in Eqs. (4.2.41) and 

(4.2.42). The results are 

t t 1 dt' exp[i(ék +W- Ek' )t'] r dt" exp(2ickd11
) 

-oo lo 
= _l_ { exp[i(sk + Ek' +w+ is )t] _ exp[i(Ek - Ek' +w+ is )t]} 

2ick' i(Ek + Ek' +W+ is) i(Ek- Ek' +W+ is) 
( 4.2.46) 

an d 

l t d, [.( ) '] ltd 11 exp[i(Ek + Ek' +w- is)t] ( ) t exp z Ek +w+ Ek' t t = - ( . )2 4.2.47 
-oo t' Ek + Ek' +W- ZS 

respectively and the is terms with s ---+ o+ have been added in order to 
make the integrals convergent. Now, it is obvious that Ek + Ek' +w > O. 
Also, because of the overall conservation k + qz + k' = O of the longitudinal 
momentum coming from Eqs. ( 4.2.43) and ( 4.2.44) then, unless the trivial 
case q = O, it can be shown that Ek - Ek' +w > O. In this way, all the 
is terms can be safely eliminateci in the final results in Eqs. ( 4.2.46) an d 
( 4.2.47). Finally, by substituting the just calculated time integrals and Eqs. 
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(4.2.43) and (4.2.44) in Eqs. (4.2.41) and (4.2.42), I obtain 

s'(l) (t) efl( eq,.x)z (ck + m)(ck' + m)n' I' 5 k,n,k',n',q,.X 4 ckck'ewBr V n,n'-l,qx,Qy k+qz+k',O 

x { eBrm ( k _ k' ) exp[i(ck + ck' + w)t] 
8c~, ck + m ck' + m c k + ck' + w 
+ k' exp[i(ck + ck' + w)t] (l+ k k' ) 

(ck + ck' + w)2 ck +m ck' +m 
_ eBrm ( k _ k' ) exp[i(ck- ck' + w)t]} 

8c~, c k + m c k' + m ck - c k' + w 
(4.2.48) 

an d 

1(2) ( ) en( eq,.x)z (ck + m)(ck' + m)(n' +l) I' 5 Sk,n,k',n',q,.X t 4 ckck'ewB! V n,n'+l,qx,Qy k+qz+k',O 

x { eBrm ( k _ k' ) exp[i(ck + ck' + w)t] 
8c~, c k + m ck' + m c k + c k' + w 

_ k' exp[i(ck + ck' + w)t] (l+ k k' ) 
(c k + c k' + w) 2 c k + m c k' + m 

_ eBrm ( k _ k' ) exp[i(ck- ck' + w)t]}. 
8c~, ck +m Ck' +m ck - ck' +W 

(4.2.49) 

The probability that a photon is emitted at time t with momentum between 
q and q + dq by an electron or by a positron is given by 

2 00 

dP(syn)(q t)= 2 Vdq Lz JdkLz Jdk' ~ ~ IB'(i) (k k' q t)l2 
' (27r)3 27r 27r .~ ~ n,n',.X ' ' ' 

t,À=l n,n'=O 
(4.2.50) 

where the limit of large Lz and V is understood and all the momenta are 
intended from now on to be continuous variables. As usual, I am interested in 
macroscopic times t such that m t >> l then I can neglect the oscillating terms 
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coming from the square modulus of s~,~',À (k, k'' q, t) and s~,~',À (k, k'' q, t): 

where I exploited the longitudinal momentum conservation to perform the 
integration on k' and where I substituted [97) 

2 2 2 "l [e>.. (q)] z 12 = l - :lE_ = qxy L.....t w2 w2 
( 4.2.52) 

À=l 

with q;Y = q; + q;. Concerning the sums o n n an d n', I will calculate them 
together with the integrals I~,n'±l (qx, qy)· In fact, 

00 

L [n'l I~, n' -l (q x' qy) 12 + (n' + l) l I~, n'+ 1 (q x, qy) 12] 
n,n'=O 

00 

= L (2n' + l)II~,n'(qx, qy)l 2
. 

n,n'=O 

Now, from Eqs. (4.2.45) and (2.1.36) I can write I~ n'(qx, qy) as 
' 

where the change of variable 

/eBi ç=y2x, 

( 4.2.53) 

(4.2.55a) 
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1J=ffy (4.2.55b) 

has been performed. With this expression I can calculate explicitly the sums 
o n n an d n', in fact 

00 

L (2n' + 1)II~,n'(qx, qy)l2 
n,n'=O 

= :2 J dçd1]dç' d1]' exp[-(e + '72 + ç'2 + '712)] 

x exp { i{I;[qx(ç'- ç) + qy('71
- 17)]} 

x f ~[(ç + i'7)(ç'- i'7')]n f 2n': l [(ç- i'J)(ç' + i1J')]n' 
n. n. 

n=O n'=O 

= : 2 J dçd1Jdç1d1]1 exp[-(ç'- ç)2 - (171
- 17)2] 

x exp { i{I;[qx(ç'- ç) + qy(1J1
- 17)]} [2(ç- i17)(ç' + i1]1

) + 1]. 

(4.2.56) 

If now I put 

( 4.2.57a) 

(4.2.57b) 

I obtain 

f (2n' + l)II~,n'(qx,qyW = : 2 j dç+dç_d1J+d'7- exp[-2(e + '7~)] 
n,n'=O 

x exp [i k(qxç- + qy1J-)] 

x [(ç+ + irJ-) 2
- (ç_ + irJ+) 2 + 1]. 

(4.2.58) 

As I have pointed out before, the presence of the external nonuniform elec-
tric field Er(t, r) = -8tAr(t, r) [see Eq. (4.2.1)] breaks the translational 
symmetry in the plane perpendicular to the magnetic field. In particular, 
as we ha ve seen in the previous Chapter, this fact also made the presence 
probabilities per unit volume diverging in the regions far from the origin 
[see Eqs. (3.2.2), (3.2.31) and (3.2.45)]. In the present case the divergence 
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comes from the integrais on the variabies ç+ and "l+ in Eq. (4.2.58). For 
this reason I will keep in ( 4.2.58) oniy the dominant terms in these integrais 
that is 

f (2n' + l)II~,n'(qx,qvW ~ : 2 j d'l+dç+(ç! +'7!) 
n,n'=O 

x j d(_d'l- exp [ ~(qx(- +M-)~ 2(e + '7~)]. 
( 4.2.59) 

Now, by passing to poiar coordinates in the ç+-"l+ piane, I easiiy obtain [see 
Eqs. (4.2.55) and (4.2.57)] 

(4.2.60) 

where Rl_M is the transverse radius already introduced in Eq. (3.2.42). 
Instead, the integrais on the variabies ç_ and 'f/- are well-known exponentiai 
integrais and I oniy quote the finai resuit: 

00 ( )2 ( 2 ) 1 1 2 l eB7 4 qxy L (2n + l)!In,n'(qx,qy)! rv4 -2- Rj_Mexp - 2eB . (4.2.61) 
n,n'=O 1 

By substituting Eqs. ( 4.2.52) and ( 4.2.61) in Eq. ( 4.2.51) I obtain the 
following expression of the probability ( dP(syn) (q, t)): 

( dP(syn) (q, t)) 
2eB 1 f2 2 

Oem q;ydq L m ( q;y ) 
rv (87r)3 w3 z l_M exp - 2eB1 

x Jdk[c(k) + m][c(k + qz) +m] 
c(k)c(k + qz) 

{ [ 
eB 1m ] 

2 
[ k k + qz ] 

2 

x 8c3 ( k + qz) c ( k) + m + c ( k + qz) + m 

[c(k) + w] 2 + c2 (k + qz) 
x 2 

[(c(k) + w]2- c2 (k + qz)] 

(k + qz)2 [l k k + qz ] 
2

} 
+ 2[c(k) + c(k + qz) + w] 4 - c(k) +m c(k + qz) +m · 

( 4.2.62) 

Finally, the photon spectrum per uni t volume V = Lz?r R]_M is obtained 
by passing to photon momentum spherical coordinates {w, (), c/;} an d by in-
tegrating on the angular variabies. Only the integrai on the variable c/; is 
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trivial then by putting u = cos B I obtain 

/ dN(syn)(w, t)) rv aemWm2(0R_LM )2 B1 
\ dwdV ( 47r) 3 Ber 

x L du(l - u2
) exp [- :;~ w2 (1 - u2

)] 

X { 00 dv [l+ E(v)][l +E( V+ uw)] 
lo E(v)E(v + uw) 

{ ( 
B l ) 

2 
[ v v + uw ]

2 

X 8Bcr l + E( V) + l + E( V + UW) 

l [E( v)+ w]2 + E2(v + uw) 
x 6( ) 2 E v+ uw [[E( v)+ w]2- E2(v + uw)] 
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(v+uw) 2 
[ v v+uw ]

2
} 

+ 2[E(v) +E( v+ uw) + w] 4 l- l+ E( v) l+ E( v+ uw) 
(4.2.63) 

where I introduced the adimensional quantities w = wjm, v = k/m and 
E( v) = Vl + v2. 

Now, the integrals in Eq. (4.2.63) can not be performed analytically 
and, for this reason, I resort to a numerica! integration. Fig. 4.3 shows 
the photon spectrum ( 4.2.63) in arbitrary units and with a magnetic field 
strength B1 = 2.2 x 1014 gauss. The qualitative form of this spectrum is 
very similar to those shown in Fig. 1.4. In fact, as it is evident from the 
figure, the spectrum shows two different behaviours below and above the 
break energy w~syn) rv 1-3 MeV. I have checked numerically that, unlike the 
annihilation photon spectrum (see Fig. 4.1) wherew~ann) ~m independently 
of the external magnetic field strength, the value of Wbsyn) here depends on 
B1 and, in particular, the lower is B1 the lower is w~syn). Nevertheless, it is 
important that by using a typical magnetar magnetic field strength such as 
B l = 2.2 x 1014 gauss, then the value of w~syn) is dose to the break energies 
characterizing the experimental GRBs spectra. In fact, as I have said in 
Par. 1.2.1, the experimental break energies are typically below l MeV, but 
there are also cases of GRBs with wb > l MeV. On the other hand, I have 
also said in Par. 1.2.1 [see Eq. (1.2.1) and below] that the experimental 
spectra of GRBs are very well fitted by a function proportional to w-1 in 
the low-energy region and by a function proportional to w-f3 with f3 rv 2-3 in 
the high-energy region. In the present case, we see from the figure that the 
high-energy part of the spectrum decreases more rapidly than w-3. This is 
be due to the fact that, asI have already pointed out in the previous Section, 
the production of high-enetgy pairs due to a slowly-rotating magnetic field 
is disfavored [see discussion below Eq. (4.1.2)]. Instead, concerning the low-
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0.01 0.1 l lO 
w(MeV) 

Figure 4.3: Photon spectrum ( dN(syn) (w, t)/( dwdV)) in arbitrary units. The 
magnetic field strength B7 is equal to 2.2 x 1014 gauss. The dotted curve 
represents a function proportional to w-3 . 

energy region of the spectrum, I want to show analytically that the spectrum 
(4.2.63) goes just as w-1 in the limit w= w/m<< l. In fact, all the terms 
in the integrals on u and v that are finite if calculated at w = O give a linear 
dependence of the spectrum on the photon energy because of the presence 
of the overall factor proportional to w in Eq. ( 4.2.63). By keeping the only 
diverging term in the low-energy limit, Eq. (4.2.63) becomes 

j dN(syn)(w, t)) w«1 2 2 ( B7 ) 3 

\ dwdV rv 2o:emWm (ORl_M) 161rBcr 

x du l - u2 dv--11 loo v2 1 
-1 ( ) 0 E8(v) [E( v)- E( v+ uw) + w]2 · 

(4.2.64) 

Now, I can write the diverging factor [E( v)- E( v+ uw) + w]-2 in the form 

l l E2 ( V) 

[E( v)- E( v+ uw) + w]2 ~ w2 [E( v)- vu] 2 ( 4.2.65) 
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and, by substituting this expression in Eq. (4.2.64), I finally have 

l dN(syn)(w, t)) 
\ dwdV 

W;51 CYem(mf!Rl_M )2 (_!!l_) 311 du(l- u2) roo dv_:!_ l 
4w 81rBcr _1 } 0 é(v) [E(v)- vu]2 

( 4.2.66) 

which is the desired result. In fact, since E( v) - vu > O in the integration 
domain, the two integrals are finite and then 

l dN(syn) (w, t)) wfm«1 _ 1 
\ dwdV ex w · ( 4.2.67) 

4.3 Direct photon production from vacuum 

In the two previous Sections I have discussed two processes in which photons 
are pro d uced by real electrons an d positrons previously crea t ed in the pres-
e n ce of the magneti c field ( 4.1.1). Instead, I want to study here a process in 
which the photons are stili produced in the presence of the slowly-rotating 
magnetic field ( 4.1.1) but directly from vacuum that is without an inter-
mediate electromagnetic interaction with real electrons and positrons. As 
I have done previously, I will treat the dynamics of the system by means 
of the adiabatic perturbation theory. Since I want to analyze the direct 
production of photons, I have to build an Hamiltonian which describes the 
interaction between a quantized and a classica! electromagnetic field. The 
use of the effective Lagrangian technique is particularly useful to this scope 
[13, 14] but, as a consequence, the results will be reliable only for photon 
energies much less than the electron mass m. 8 

I start with a completely generai expression of the effective Lagrangian 
density !L' of a free electromagnetic field [Er(t, r), BT(t, r)]. It is known 
that, in order to be a true Lorentz scalar, the effective Lagrangian density 
must be a function only of the relativistic invariants Fr and G} (because 
GT is, actually, a pseudoinvariant) with 

l 2 2 Fr = 2,(BT- ET), 

GT = ET·Br, 

then, in generai, 
!L' = !L' ( F T, G}). 

(4.3.la) 

(4.3.lb) 

(4.3.2) 
8 0n the other hand, as I have said at the beginning of Sect. 4.1, in order to consider 

the external magnetic field as uniform and slowly-varying then the photon energies are 
always assumed to be much larger than n. 
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Now, suppose that the total electromagnetic field is the sum of a radia-
tion field [E( t, r), B(t, r)] which will be quantized and of a classica! field 
[E(t,r),B(t,r)] which, at the moment, I assume to be the constant and 
uniform magnetic field B given in Eq. (2.1.38): 

Er (t, r) = E (t, r), 
Br( t, r) = B (t, r) + B. 

(4.3.3a) 
(4.3.3b) 

Since I am not interested in the interactions of the radiation field with itself, 
I expand the effective Lagrangian density ( 4.3.2) up to quadratic terms in 
E( t, r) and B(t, r) and I obtain the expression 

(2) Cl ( 2 2) l [ 2 2] 2 = 2 E - B + 2 c2 (n · E) + C3 (n · B) (4.3.4) 

where n = B / B an d where 

Cj =- ::; IE=B=O, (4.3.5a) 

c2 = 2B
2 :~l , 

T E=B=O 
(4.3.5b) 

EJ221 c3 = B2 aF 2 . 
T E=B=O 

(4.3.5c) 

In the Lagrangian density ( 4.3.4) the interaction between the radiation field 
an d the classica! field is described by the last two terms. The strength of the 
interaction depends on the coefficients c2 and c3 and I will give them later 
in the case in which the effective Lagrangian density is the Euler-Heisenberg 
Lagrangian density [98, 99, 5]. 

In order to build up the Hamiltonian density corresponding to the La-
grangian density ( 4. 3.4) I ha ve t o introduce the fourpotential field A a (t, r) = 
[V(t,r),A(t,r)] relative to the radiation field. Ifi choose a gauge in which 
V( t, r) = 0,9 the radiation field is given by 

E( t, r) = -8tA(t, r), 
B(t, r) = 8 x A( t, r). 

(4.3.6a) 
(4.3.6b) 

By expressing the Lagrangian density ( 4. 3. 4) in terms of the vector potential 
A( t, r) and of its derivatives, I can calculate the momenta 7rA(t, r) conju-
gated to A( t, r) as 

(4.3.7) 

9It can be shown that another condition is needed to fix unambiguously the radiation 
field gauge [see [93] fora more detailed treatment]. 



Chapter 4 

and, finally, the Hamiltonian density 

.Yt'(2) = 1T' A . OtA - ~(2) 
2 

= 7rA +cl B2- c2 (n. 1T'A)2- C3 (n. B)2. 
2c1 2 2c1 ( c1 + c2) 2 
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( 4.3.8) 

At this point in order to calculate the energy spectrum of the pho-
tons produced directly from vacuum in the presence of the slowly-rotating 
magnetic field (4.1.1), I should substitute the static magnetic field B with 
Br (t) an d to apply to the total time-dependent Hamiltonian H(2) (t) = 
J dr .ft'(2) (t) the adiabatic perturbation theory. Sin ce, as I ha ve mentioned, 
the production through this mechanism is low I only quote the final result in 
the particular case of the Euler-Heisenberg Lagrangean density [98, 99, 5): 

~(E-H) = - ].__ FT 
47r 

+ 8: 2 {" ~: exp( -im2s) [(es) 2 fGrl cot (esJ J Ff + G} + Fr) 
x coth (esJ J Ff + G}- Fr) -l+ ~(es? Fr] 

(4.3.9) 

where FT and GT are the relativistic invariants of a generic constant and 
uniform total electromagnetic field (ET, BT). In our case, i t can be shown 
t ha t the following asymptotic estimates of the coefficients c1, c2 an d c3 ho l d 
for external magnetic field strengths Br>> Ber [see Eqs. (4.3.5)]1°: 

ciE-H) rv _.!_- aem log (Br) ~ ]..., (4.3.10a) 
47r 37r Ber 47r 

(E-H) aem l ( B7) 
c2 rv 37r og Bcr ' (4.3.10b) 

(E-H) aem c3 rv --
37r 

(4.3.10c) 

where I put approximatively ciE-H) rv 1/( 47r) since in every realistic physical 
situation the "log" term is always negligible. By reminding that a;~= 137, I 
can assume that the magnetic field B7(t) is such that l<< Br/Ber<< 1/aem 
(if Br= 1015 gauss then Br/Ber= 22.7). In this approximation it can be 
shown that the final energy spectrum of the photons produced directly from 
vacuum is given by 

·r l Br -1 
l <<- <<aem· Ber 

(4.3.11) 

10 Note that the coefficients c 1 , c2 and c 3 were defined starting from the Lagrangian 
density ( 4.3.4) where the magnetic field does not yet depend on time. 
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As it is evident, the photon energy spectrum does not depend on the photon 
energy in contrast with the experimental GRBs spectra that, in the low-
energy region w<< m are proportional to w-1 . Also, it can easily be checked 
that the direct production of photons from vacuum is low and completely 
negligible with respect to the production through synchrotron radiation ( the 
comparison with the production through pair annihilation is harder because 
I have calculated not a photon spectrum but a photon spectrum per unit 
time). In fact, just to give an idea, by assuming B1 = 1015 gauss and 
R.lM = 105 cm [see the discussion below Eq. (3.2.26)] then 

(dN(dir)(w, t)/(dwdV)) Br ( À ) 2 
_ 32 

(dN(syn)(w, t)/(dwdV)) w=1 MeV rv O:em Ber Rl_M = 2.5 X 10 . 
(4.3.12) 

4.4 Summary and conclusions 

In this Chapter I have presented an analysis of the production of photons 
in the presence of a strong, uniform and slowly-rotating magnetic field. As 
I have said, this investigation has been motivated by suggestions coming 
from the study of GRBs. Nevertheless, the theoretical attitude has been 
to consider some very simplified versions of the processes so that the phe-
nomenological parameters and the dynamical details could be reduced to 
the minimum. In fact, the external parameters entering the game are only 
two: the magneti c field strength B 1 an d its rotational frequency n. The 
analysis has yielded some definite results, making evident, in quantitative 
form, the presence of a production of photons 

l. through the annihilation of pairs previously created in the presence of 
the rotating magnetic field; 

2. as synchrotron radiation by electrons and positrons previously created 
in the presence of the rotating magnetic field; 

3. directly from vacuum. 

In the last two cases I have calculated the energy spectrum of the photons 
produced, while in the first one it resulted more natural to calculate the 
energy spectrum per uni t time. In particular, only in the third case an an-
alytical spectrum has been obtained. To do this, the effective Lagrangean 
technique has been used in such a way the resulting spectrum is reliable 
only for photon energies much less than the electron mass m. In this case 
I found that the spectrum becomes asymptotically independent of the pho-
ton energy w [see Eq. (4.3.11)] while the experimental GRBs spectra go in 
the same limit as w-1. Nevertheless, I have shown explicitly that the direct 
photon production mechanism is not quantitatively very efficient and it gives 
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an energy spectrum completely negligible with respect to the corresponding 
synchrotron spectrum [see Eq. (4.3.12)]. The comparison with the photon 
production process through pair annihilation is less evident. In fact, in this 
case I have calculated the photon energy spectrum per unit time result-
ing from the annihilation of two identica! "distributions" of electrons and 
positrons created from vacuum in the presence of the slowly-rotating mag-
netic field (4.1.1) [see Eqs. (4.1.3) and (4.1.2)]. The "annihilation" spectrum 
so obtained ( see Fig. 4.1) shows a sharp peak (break energy) around the 
electron mass an d a ra p id increasing ( decreasing) below ( above) m an d i t is 
very different from the experimental GRB energy spectra (see Fig. 1.4). 

Instead, a much better qualitative agreement has been obtained between 
the synchrotron spectrum an d the experimental ones ( see Fig. 4.3). In this 
case, I started from the Lagrangean density of QED in the presence of the 
external magneti c field B l (t) an d I transformed i t into a more useful "effec-
tive" Lagrangean density in order to exploit the fact that B1(t) had been 
assumed, in fact, slowly-rotating. By calculating the S-matrix elements cor-
responding to the process of pair creation and subsequent photon emission 
by the electron or by the positron (see Fig. 4.2) I finally obtained the photon 
spectrum (4.2.63) that is shown in Fig. 4.3 when B1 = 2.2 x 1014 gauss. 
Similarly to the GRBs experimental spectra, the theoretical spectrum shows 
a double decreasing behaviour with two different slopes around the break 
energy. In this case the value of the break energy depends on the magnetic 
field strength an d i/ B 1 rv 1014 gauss then the break energy lies between 
l Me V and 3 Me V as some experimental GRBs spectra. Most important, 
the low-energy region of the synchrotron spectrum shows a linear dependence 
on the inverse of the photon energy exactly as the energy spectra of GRBs. 
Finally, it is worth noting that, instead, in the high-energy region above the 
break energy both the annihilation and the synchrotron spectra decrease 
too rapidly with respect to the experimental GRB spectra. AsI have said, 
this common feature is due to the fact that in my model the production of 
high-energy pairs (and then of high-energy photons) is not very efficient [see 
Eq. (4.1.2)]. 
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Chapter 5 

Pair production in a strong, 
uniform and slowly-varying 
magnetic field: the effect of a 
background gravitational 
fie l d 

The aim of this Chapter is to continue the study of the production of 
eiectron-positron pairs in the presence of a strong, uniform and siowiy-
varying magnetic fieid started in Chap. 3. As I have pointed out in Sect. 
1.2, the physicai situation I have in mind is the creation of pairs around 
astrophysicai compact objects Iike magnetars or biack hoies. But, till now I 
have performed all the calcuiations in a flat spacetime, that is negiecting the 
effects of the gravitationai fieid createci by the compact object. Even if there 
are situations in which this can be safeiy clone [100, 101], it is interesting 
to study what happens if the effects of the gravitationai fieid are taken into 
account. This is clone in the present Chapter. In particuiar, after stating 
the generai assumptions of the theoreticai modei (Sect. 5.1), in Sect. 5.2 the 
structure of the gravitationai fieid is assumed to be such that its effects can 
be caicuiated perturbativeiy [102] while, in Sect. 5.3 the effects of a strong 
gravitationai fieid are taken into account nonperturbativeiy [103]. 

5.1 Generai assumptions 

In the previous Chapters I have performed all the calcuiations in Minkowski 
spacetime. By reminding the astrophysicai scenario I described in Sect. 1.2, 
this means that the effects of the gravitationai fieid of the centrai engine 
producing a GRB have been negiected. AsI have said at the beginning of 

85 



86 Section 5.1 

Par. 3.1.1, if one considers the production of pairs around magnetars, this 
assumptions is very realistic. Nevertheless, we have seen in Par. 1.2.3 that 
many models identify the centrai engine of GRBs with a massive rotating 
black hole surrounded by an accretion disk. In this case, obviously, the 
strength of the gravitational field can be such large that its effects could be 
relevant. As I will explain in the following Sections, these effects are taken 
into account by working in the framework of quantum field theory in curved 
spacetime (see Sect. 2.3). Actually, in my model the main responsible of 
the pair creation is still the magnetic field and the fact that it varies with 
time. For this reason, the final presence probabilities will be calculated 
again by using the first-order adiabatic perturbation theory. Nevertheless, 
the presence of the black hole gravitational field will be taken into account 
in the determination of the one-particle electron and positron modes and 
energies and this fact will make the presence probabilities calculated here 
different from those obtained in Minkowski spacetime [102, 103]. 

According to what I have just said, I assume that the spatial structure 
and the time evolution of both the gravitational field and the magnetic field 
produced by the black hole are given. Nevertheless, in order to determine 
a realistic form of these fields I should fix the physical properties of the 
source (its mass, its eventual electric charge, its angular momentum and 
so on) and solve the system built up by the Einstein equations and the 
generai covariant Maxwell equations. Clearly, this is a hopeless problem and 
a number of approximations have to be don e. In particular, I first assume 
that the Einstein equations and the generai covariant Maxwell equations are 
disentangled. This corresponds to neglect the gravitational field produced 
by the magnetic field and to assume that the spacetime metric is determined 
only by the black hole. In order to further simplify the problemI assume that 
the spacetime metric is actually that produced by a spherical, uncharged, 
nonrotating black hole and that the corrections to this metric due to its 
eventual charge, to its rotation and to its magnetic field can be neglected. 
N evertheless, the black ho le itself should be capable to produce a time-
varying magnetic field. This request can be satisfied without changing what 
I have said about the spacetime metric, if the spherical body is collapsing 
but keeping its spherical symmetry and without rotating. In this case, in 
fact, the metric tensor outside the body does not change because of the 
Birkhoff theorem [82] while the magnetic field is found to grow with time to 
compensate for the decreasing of the gravitational energy of the collapsing 
body. 

In these approximations, asI have said, my starting point is the metric 
tensor corresponding to the field created by a spherical body with mass M 
outside the body itself. If I call t, and R = (X, Y, Z) the four coordinates, 
this metri c tensor is a function only of the radius R = v' X 2 + Y2 + Z 2 an d 
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it can be written as [87] 

9~v(R) = diag [c~ ~r ,- (1+ :~t,- (1+ :~t,- (l+ :~t] 
(5.1.1) 

with re = 2G M the gravitational radius of the body ( G is the gravitational 
constant). I ha ve chosen the so-called isotropic metri c instead of the usual 
(and equivalent) Schwarzshild metric, because from Eq. (5.1.1) one sees 
that the spatial distance is proportional to its Euclidean expression and this 
will simplify future calculations. I point out that in this metric the event 
horizon of the black hole is the spherical surface R = rc/4. 

Concerning the magnetic field, we have seen before that the rotating 
magnetic field configuration is very efficient from the point of view of pair 
production then it would be natural to consider here again the same con-
figuration. Nevertheless, I have evaluated the corrections to the presence 
probabilities due t o a weak gravitational field an d, actually, t h ere are no t 
new interesting qualitative effects to be discussed [in any case they can be 
found in [102]]. Instead, my first task in this Chapter is to show that also the 
presence of a weak gravitational field superimposed to a time-varying mag-
netic field with fixed direction makes different from zero the probability that 
starting from vacuum a pair is present with the electron and the positron in 
a TGS. For this reason I will consider in this Chapter the following magnetic 
field time evolution 

B~xp (t) = ( ~ ) = ( ~ ) 
B~xp(t) BJ +(Bi- BJ) exp(-t/T) 

(5.1.2) 

with Bi < B f an d with T a typical macroscopic time characterizing the time 
evolution of the black hole (for example, its collapse duration). 

Sin ce the spacetime is curved an d the metri c tensor is not simply 'fJa{3, 

o ne must pay attention in defining the vector potential A~~P (t, R) t ha t gives 
rise to B~xp(t). To this end, I assume that the threedimensional components 
of the magnetic field B~xp (t) define the spatial-spatial components of the full 
covariant electromagnetic tensor F;;~ (t, R) t ha t then are uniform in space: 

F exp( ) _ pexp( ) _O 
t32 t - - t23 t = ' 

F:~f(t) = -F:;f(t) =O, 
F:;f(t) = -F:~~(t) = B~xp(t). 

(5.1.3a) 
(5.1.3b) 
(5.1.3c) 

All the other full covariant components of F;;~(t, R) obviously vanish while 
the mixed or the full contravariant components are built by means of the 
metri c tensor ( 5 .1.1). N ow, also in curved spacetime 

(5.1.4) 
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then by means of Eqs. (5.1.3), I can choose the covariant vector A~~P(t, R) 
as 

A~i(t,R) =O, 

Aexp(t R) = ~Y Bexp(t) 
t1 ' 2 t ' 

A~i(t, R) = -~XB~xp(t), 
A~i(t, R) =O. 

(5.1.5a) 

(5.1.5b) 

(5.1.5c) 

(5.1.5d) 

These equations define a gauge corresponding to the symmetric gauge in 
Minkowski spacetime [see Eq. (2.1.4)]. Finally, it is convenient to define 
also the threedimensional vector potential A ~xp (t, R) as 

(5.1.6) 

where the minus sign has been inserted to have 8 x A~xp(t, R) = B~xp(t). 
Now, as I ha ve do ne previously, I will calculate the probability that a pair 

is present at time t by applying the first-order adiabatic perturbation theory. 
To do this, I have to build up the second-quantized Hamiltonian of a Dirac 
field w'(t, R) in the presence of the slowly-varying magnetic field (5.1.2) 
and in the curved spacetime with the static metric tensor (5.1.1) and to 
determine its instantaneous eigenstates and eigenenergies. 1 The Lagrangian 
density of this system is given by [see Eq. (2.3.34)]: 

2' (t) = y' ~g(R) g [ >l!'-y~'(R) [i!ZI'" + eAf'J (t, R)]W' 

~>l!'[i]iJ" ~ eA~7:'(t, R)h"(R)W'] ~ m>l!'W'} 
(5.1.7) 

where all the quantities representing the gravitational field are defined in 
Par. 2.3.2. Now, in generai, a pair is created in a spatial volume with typical 
length given by the Compton length À = 3.9 x 10-11 cm while for a typical 
10 solar masses black hole re = 3.0 x 106 cm. In this way, since À <<re, I 
am allowed to make some simplifications on the metric tensor (5.1.1). In the 
following two Sections I will approximate the metric tensor (5.1.1) and all 
the connected quantities appearing in Eq. (5.1.7) in the two cases in which 
the pair is present far from (Sect. 5.2) or near (Sect. 5.3) the event horizon 
of the black hole. While in the first case the gravitational effects will be 
accounted for perturbatively, in the second one a nonperturbative approach 
will be followed. 

1In this Chapter, I use the prirned notation to indicate the Dirac field and the related 
quantities because I deal with a rnagnetic field varying only in strength and always lying 
in the Z direction (see the notation used in Sect. 2.1). 
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5.2 Weak-gravitational field case 

In this Section I assume that the pair is produced in a small neighborhood of 
the space point labeled by the coordinates (Xc, O, O) with Xc> re/4+.6. and 
.6. > O. If (Xc+ x, y, z) is a generic point in this neighborhood then lxi ;S ~' 
IYI ;S ~ and lzl ;S ~ and I can calculate the metric tensor 9J.Lv(Xc +x, y, z) 
by keeping only the terms up to first order in x/Xc, y/Xc and z/Xc. It can 
easily be seen that the resulting metric tensor depends only on x and that 
it can be written as 

where 

g~~ = diag(gt, -gs, -gs, -gs), 
hJ.Lv(x) = diag(2ftx, 2j8 x, 2fsx, 2fsx) 

with [see Eq. (5.1.1)] 

(
l- re/4Xc) 2 

gt = l + re/ 4Xc ' 9s =(l+ ~J4

' 
1- re/4Xc re 

ft = (l+ re/4Xc) 3 2X~' 
re re 

( )

3 

fs = l + 4Xc 2X~. 

(5.2.1) 

(5.2.2a) 
(5.2.2b) 

(5.2.3a) 

(5.2.3b) 

It is evident that, in order that g~~ (x) is a good approximation of 
gJ.Lv(Xc +x, y, z), Xc can not be chosen to be too dose to the criticai value 
re/4. Just to give an idea, it easy to see that, if N >> l is a large pure 
number, then 

( (l) ) g J.LJ.L x c + x' y' z) - 9J.LJ.L (x 
9J.LJ.L(Xc +x, y, z) 

with J.L =O, ... , 3, only if 

This condition automatically implies that 

l 
<-N 

(5.2.4) 

(5.2.5) 

(5.2.6) 

with J.L =O, ... , 3 and then that hJ.Lv(x) can be considered as a small correc-
tion of g~~. In what follows, I assume that the previous inequalities hold 
with sufficiently large N. I want to observe h ere t ha t even for very large 
values of N, Eq. (5.2.5) does not constraint very much the values of Xc: in 
this respect the expression "far from the black hole event horizon" is to be 
interpreted as "microscopically far from the black hole event horizon". 
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Since g~~ (x) has been split as in Eq. (5.2.1) with the matrix h1.w(x) 
much smaller than the matrix g~~, I am allowed to keep in the Lagrangean 
density (5.1.7) only the first-order terms in h1.w(x). To do this, I observe 
t ha t 

(5.2.7) 

where 

g(O) = det(g~~) = -gtg~, (5.2.8a) 

h(x) =h Jt(x) = 2 (!t- 3fs) x. 
M 9t 9s 

(5.2.8b) 

Also, being the metric tensor g~~ (x) diagonal, I can choose a diagonal tetrad 
[see Eq. (2.3.20)] with 

e~l)O(x) = l ~ _1_ (l_ ftx) 
gà~) (x) - Vffi 9t ' 

(5.2.9a) 

e~l)i(x) = l ~ _1_ (l+ fsx) 
z J-giJ)(x)- J9s 9s 

(no sum). (5.2.9b) 

By means of this tetrad it can be shown that the connections hidden in the ..__ 
covariant derivatives !?)Jt and !?2M are already first-order quantities given by 

r (l)( ) _ ~ 1/3 (O)l (o)pdhJtp(x) 
M x - 4 a e l e /3 d x 

where e~)Jt is the diagonal zero-order tetrad with 

e(O)O _ l _ l 
o - fjj- Vffi' 

(O)i _ l _ l 
e. - --zF;[f.;g; (no sum). 

(5.2.10) 

(5.2.lla) 

(5.2.llb) 

Now, the procedure to calculate the Lagrangian density (5.1.7) up to 
first order in hJtv (x) is identica! to that used in the weak gravitational field 
approximation [104, 105] and I give only its final expression: 

2'(l) (t) 

= Vf! (l- fEx)[W'-l(i8oW')- (i8oW')·-lW'] 

+ 9s:[Yt (l- fpx) [ ~'ì/[ioi + eA~~P(t, r)]w'- ~'[iBi- eA~~P(t, r)]-~/w'] 
-~(l- fMx)m~'w' 

(5.2.12) 
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where r =(x, y, z) and where I defined the three couplings2 

(5.2.13a) 

(5.2.13b) 

(5.2.13c) 

Note that the modifications induced by the metric tensor (5.2.1) in the 
Lagrangian density (5.2.12) are linear in ft and fs (obviously) but nonlinear 
in 9t and 9s· 

According to what I have said in Sect. 2.3, I define the Hamiltonian 
density of the Dirac field w' (t, r) as 

(5.2.14) 

where 

fi'(1) (t r) = 82'(1) = r3g3 i(1 -!Ex) ~'(t r)I'Vo 
' a(aow') v Ys 2 ' l ' 

(5.2.15a) 

II'(1)(t r) =: 82'(1) =- r3g3 i(1- fEx) 1'\!0w'(t r) 
, 8(8ow') v Ys 2 l ' 

(5.2.15b) 

are the first-order conjugated momenta to the fields w' (t, r) and ~' (t, r) re-
spectively. By using the previous equations it can easily be shown that, apart 
from derivatives terms, the Hamiltonian density (5.2.14) can be written as 

(5.2.16) 

where I introduced the one-particle first-order Hamiltonian 

'H.'(1l(t) = v'9tL~ [(1- fpx)o. · [-i8 + eA~xp(t, r)] 

+a· [-i8 + eA~xp(t, r)](1- fpx)J + (1- fMx)j3m 

+!Ex [ )g.o. · [-i8 + eA~xp(t, r)] +11m] }· 
(5.2.17) 

Despite its appearance, the previous one particle Hamiltonian (5.2.17) is 
an Hermitian operator. In fact, the Hermiticity depends on the definition 

2 I introduced three couplings for later convenience because, actually, only two of them 
are independent. 
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of the scalar pro d uct an d I remind t ha t the scalar prod uct of two spinors 
\ll1(t,r) and \ll2(t,r) is defined in curved spacetime as in Eq. (2.3.37). By 
choosing the Cauchy surface ~ as the t= const. hypersurface, then d~= dr, 
n1-t(t, r) = (1, O, O, O) [87] and the scalar product (2.3.37) becomes up to first-
order terms 

(5.2.18) 

and the one-particle Hamiltonian (5.2.17) results, in fact, to be Hermitian. 
The fact that this one-particle Hamiltonian is a "good" Hamiltonian is also 
corroborateci by the fact t ha t the equation of motion of the field w' (t, r) 
given, in generai, by 

(5.2.19) 

can be written in the present case as 

(5.2.20) 

Coherently, the total Hamiltonian of the Dirac field is given by 

(5.2.21) 

Now, this Hamiltonian depends explicitly on time only through the depen-
dence of 'H'(1)(t) on the magnetic field B~xp(t) hidden in the vector potential 
A~xp(t, r) [see Eq. (5.1.6)], then it is a slowly-varying quantity. In this way, 
also in this case, in order to calculate the pair presence probability I can 
use the first-order adiabatic perturbation theory. Since the conceptual steps 
are the same as those followed in Chap. 3, I will not repeat all the details. 
In particular, I have to determine the one-particle electron and positron 
modes and energies of the time-independent Hamiltonian obtained from Eq. 
( 5.2.17) by substituting the vector potential A~xp (t, r) with A' ( r) given in 
Eq. (2.1.4) and corresponding to the static magnetic field B'(O, O, B) [see 
Eq. (2.1.1)]. This one-particle Hamiltonian can be written as the sum 

'H'(l) = 'H'(O) +I' 

of the zero-order Hamiltonian 

'H'(0) = fE {a. [-i8 + eA'(r)] +#,{3m} V gs 
and of the first-order interaction 

T' = ..J9t(fp -!M )f3mx- fp {x, 'H'(O)} + fEx'H'(o). 
2 

(5.2.22) 

(5.2.23) 

(5.2.24) 
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In this way, in the present physical situation the o ne-parti de electron an d 
positron modes and energies can be determined perturbatively in the cou-
plings fE, fp and !M (or, equivalently, ft and fs) by using the time-
independent perturbation theory [106]. In particular, in the following Para-
graph I will determine the zero-order electron and positron modes and the 
corresponding first-order energies. Instead, in Par. 5.2.2 I will calculate the 
first-order corrections only to the zero-order TGSs previously obtained. 

5.2.1 Computation of the one-particle modes up to zero or-
der and of the one-particle energies up to first order 

If UJ( r) an d V)( r) with J embodying all the needed quantum numbers are 
the electron and positron modes then they satisfy the equations 

'H'( l) U' = w U' 
J J J' 

vl(l)V' = _- V' 
1 t. J WJ J 

(5.2.25a) 

(5.2.25b) 

where wJ and wJ are the electron and positron one-particle energies. The 
states u; ( r) an d Vj ( r) are assumed to be an orthonormal basis with respect 
to the scalar product (5.2.18), i.e. 

(u' U' )Cl) _(V' V')(l) _ À 
J' J' - J' J' - uJ,J'' 

(u;, v; )C1) =o. 
(5.2.26a) 

(5.2.26b) 

I first want to determine the zero-order solution of Eqs. (5.2.25). Up to 
this order those equations can be written as 

{f; {a· [-i8 + eA'(r)] + (3y9sm} u;<o) = w;0 lu;<o), 

{f; {a· [-i8 + eA'(r)] + (3y9sm} v;<o) = -wj0lv;<o) 

(5.2.27a) 

(5.2.27b) 

These equations are the eigenvalue equations in Minkowski spacetime of a 
particle with mass y9sm and charge -e< O in the presence of the magnetic 
field B', then their solutions can be written immediately. In particular, 
J = j = {na,k,a,n9 } and w)0

) and w)0
) are given by the modified Landau 

levels 

(5.2.28a) 

(5.2.28b) 

Instead, the corresponding modes will be indicated as u;(o)(r) and v}0)(r) 
respectively and they are given by Eqs. (2.1.23) with y9sm instead of m, 
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w)0
) instead of Wj and with w)0

) instead of Wj· Now, analogously to what 
I have said in Par. 2.1.2, the one-particle electron and positron energies 
(5.2.28) have two kinds of degenerations. The first one is due to the fact 
t ha t they do not depend o n the quantum number n9 (n d). The second o ne 
is due to the fact that the electron (positron) modes with quantum numbers 
J+ = {nd, k, +l, n9 } and j_ = {nd +l, k, -l, n9 } (]+ = {nd, k, +l, n9 +l} 
and J_ = {nd,k,-l,n9 }) have the same energy whatever n9 (nd)· This 
means, following the time-independent perturbation theory, that the modes 
u~(O) ( r) an d v;(o) ( r) will no t represent, in generai, the correct zero-or der 
modes U~(O) ( r) an d v;(o) ( r) an d, for this reason, they have been indicated 
by means of the symbols u;(o)(r) and v;(o)(r). 

Now, in the following, I will compute explicitly only the zero-order elec-
tron modes and the first-order electron energies, while the analogous results 
for the positron modes and energies will be only quoted. Following the time-
independent perturbation theory for degenerate states, I write the zero-order 
solutions of Eq. (5.2.25a) with a given energy as linear combinations of all 
the degenerate modes u~(O)(r) and v;(o)(r) with that energy. Now, it can 
easily be shown that the perturbation I' does not remove the energy degen-
eracy of the modes characterized by the quantum numbers j_ and J+ [see 
[102] for further details]. In other words, following the time-independent 
perturbation theory for degenerate states [106], I have to diagonalize the 
perturbation I' inside every subspace labeled by the quantum numbers j 
whatever n9 . In this way, the "true" zero-order modes are characterized by 
the quantum numbers { nd, k, a} and by a new index that, for later conve-
nience, will be indicated as x o. lf I call U~(o~ a x ( r) the resulting zero-order 

d, ' ' o modes then 

00 

u~~,~,a,xo(r) = L P~~,k,a,xo;nd,k,a,ngu~~:k,a,ng(r) (5.2.29) 
n 9 =0 

where the coefficients p(O) k k n sol ve the secular equation [106] nd, ,a,xo;nd, ,a, 9 

00 

"'"' (In' k n ·n k ' -End k a xo8n n') p(O) k k ' =O (5.2.30) ~ d' ,a, 9 , d, ,a,n9 ' ' , g, g nd, ,a,xo;nd, ,a,n9 
n~=O 

with, in generai, 

Iji' = j drV9fu~t(r)I'uj,(r) (5.2.31) 

an d with End,k,a,xo the first-order corrections ( to be determined) to the en-
ergies of the modes Un'(O)k x (r). 

d, ,a, o 
Now, one can show that the matrix elements In' k,.. n ·n k,.. n' can be d, ,v, g, d, ,v, g 
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written as 

= [uP- /M):~l
2 

+ UE- fp)wj0l] j dxdye;:d,n.(x,y)xoO~d,n~(x,y) 
J 

(5.2.32) 

where the operator x o an d the functions B~d n (x, y) ha ve been defined in 
' g Eqs. (2.1.12a) and (2.1.28) respectively. Ftom Eqs. (2.1.23) and (2.1.26) 

we see t ha t only the transverse functions B~d,ng (x, y) in tt~(O) ( r) depend o n 
n9 , then I ha ve to determine the coefficients p n( O) k a x ·n k a n in su eh a way 

d, ' ' o, d, ' ' g 

that the linear combination I:noo _ 0 p(O)k . k B~d n (x, y) diagonalizes g- nd, ,a,xo,nd, ,a,n9 , g 
the operator xo.3 This linear combination is given in [73] [it is Eq. (104) in 
Complement Evr]. The coefficients pn(o) k . k n result independent of d, ,a,xo,nd, ,a, 9 

the quantum numbers { nd, k, a} and they are given by 

(O) (O) 4 /eB l ;-;:; ( eBx6) p nd,k,a,xo;nd,k,a,ng =p ng (xo) = V-;- J2ngng! Hng( V eBxo) exp --2-

(5.2.33) 
where I pointed out that x0 is a continuous quantum number and where 

(5.2.34) 

is the n9th-order Hermite polynomial [107]. As a conclusion, the spinors 
U~~%,a (x o; r) ha ve the same form of the spinors u~(o) ( r), but with the func-
tion B~d n (x, y) substituted by the function , g 

00 

e~d(xo;x,y) =L P~0J(xo)B~d,ng(x,y). (5.2.35) 
ng=O 

3 Now, it is clear why I have called the additional index xo. 
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By using the second expression of B~d n (x, y) in Eq. (2.1.28) I obtain 
' g 

e' ( . ) _ (a~)nd 4/eB /eB [ eB ( 2 x
2 + y2

)] l nd xo,x,y - v'ndf V -;-V 2exp -2 Xo + 2 ; 

l oo 
00 

1 [ ]ng 
x -oo ds exp ( -s2

) n~o ng! ( .;;;J3x0 + is).;;;B(x- iy) 

= (a~)nd 4/eB /eB exp [- eB (x5 + x2 + y2)] _!_ 
v'ndf v -;-v 2 2 2 7r 

x exp [eBxo(x- iy)J 1: dsexp [ -s2 + i.;;;B(x- iy)s] 

= (a~)nd 4/eB /eB exp {- eB [(x- xo)2 - iy(x- 2xo)]}. vlndT v -;-v 2; 2 
(5.2.36) 

From now on, the quantum number n9 completely disappears in the 
calculations because it is essentially substituted by the quantum number 
xo. This circumstance allows me to simplify the notation. In fact, I can 
eliminate the index "d" from the remaining quantum number nd and from 
the related operators ad and a~ [see Eqs. (2.1.20a) and (2.1.20b)]. Also, 
later calculations will be simplified if I discretize the eigenvalues x0 . This 
can be clone by requiring the functions e~d(xo; x, y) to satisfy the periodicity 
condition at x = O 

(
. eBxoLy) ( . eBxoLy) exp z 

2 
= exp -z 

2 
(5.2.37) 

where Ly is the length of the quantization volume in the y direction. In this 
way, the allowed eigenvalues are given by the discrete values 

2frr 
xo = eBLy .e= o, ±1, .... (5.2.38) 

I point out that if I imposed the periodicity condition at x' -1- O, the allowed 
eigenvalues would change. Nevertheless, since at the end of the calculations 
I will perform the continuum limit Ly -+ oo, I am not interested in the 
exact values of the allowed eigenvalues but only in the eigenstate density 
g(xo) which is 

g(xo) = df = eBLy 
dxo 2?r 

(5.2.39) 

independently of x0 . In this way, the function (5.2.36) becomes 

1 (at)n 4{iE { eB 2 . J} en,xo(x, y) = vnr v~ exp -2 [(x- xo) - %y(x- 2xo) . 

(5.2.40) 
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The numerica! factors have been chosen in such a way that if I define [anal-
ogously to the twodimensional spinors cpj(r) given in Eq. (2.1.26a)] the 
twodimensional spinors 

n:J ( ) = exp( ikz) !.'e' ( ) 
'±' J r - ,;y;; u n, x o X' Y 

with 
J = {n,k,O",xo}, 

they result normalized as [see also Eq. (2.1.31)] 

j dr<P1(r)<P~,(r) = f!J,J' 

(5.2.41) 

(5.2.42) 

(5.2.43) 

with 5 J J' = 5n n'5k k'5u u'5x0 x'. Finally, the zero-order spinors U1'(0) ( r) are 
' ' ' ' ' o given by [see Eq. (2.1.23a)] 

w~o) + J9tm ( g <P~}r) ) 
2w (O) {E (O) <I>~ ( r) 

J V 9s w 1 + ylgim 
U'(O) (r) = _l_ 

J 4/:3 v 98 
(5.2.44) 

and they are normalized as [see Eq. (5.2.18)] 

J f:3 t( O )t ( ) t(O) ( ) ~ dry g8U1 r UJ' r = uJ,J'· (5.2.45) 

In Eq. (5.2.44) I used the fact that the energies (5.2.28a) do not depend 
neither on n nor on x0 then w\0) = w(o) = w(O) = w(o) 

9 J nd,k,u,ng n,k,u,xo J 

Instead, from Eq. (5.2.32) the energy corresponding to the mode U~(O) (r) 
is, up to first or der, 

(1) (O) [ 9tm2 
(O)] WJ = WJ + (jp- fM)-;Jff + (fE- fp)w1 Xo 

= ./gtm2 + gt [k2 + eB(2n +l+ O")] (5.2.46) V 9s 

{l [
ft fs k2 +eB(2n+l+O") l } x + - + xo 
9t 9s 9sm2 + k2 + eB(2n +l+ O") 

where I used the definitions (5.2.13) of the coefficients !E, fp and fM· In 
an analogous way one can write the positron energies up to first order as 

W~1) = J 9tm2 + gt [k2 + eB(2n +l- u)] 
9s 

{l [
ft fs k2 +eB(2n+l-O") l } x + - + xo . 
9t 9s 9sm2 + k2 + eB(2n +l- O") 

(5.2.47) 
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I observe that, as in the case of the electron modes and energies, the quantum 
number nd is here substituted by x 0 , and it is pointless to keep the index "g" 
in the remaining quantum number n9 because there is no more possibility 
of ambiguity. 

Finally, the zero-or der positron m od es are given by [ see Eq. ( 2.1. 23b)] 

-(o) ( Jf;t V' , ( )) w 1 + y/gim - - _(O) X 1 r 
-(O) 9s w1 + ..j9tm 

2w J X~(r) 
y'(o) (r) = __!!__ 

J 4/:3 v9s 

with [see Eq. (2.1.26b)] 

X' ( ) = exp( -ikz) f' e' ( ) 
J r - VE; -a n, x o x' y 

and they satisfy the orthonormalization relations 

j drJY!v;<o)t(r)V;~o)(r) = OJ,J' 

j drJY!v;<o)t (r)U~\0){r) =O. 

(5.2.48) 

(5.2.49) 

(5.2.50a) 

(5.2.50b) 

5.2.2 Computation of the one-particle TGSs up to first or der 

I should pass now to the determination of the one-particle states u; ( r) an d 
v;(r) up to first order in the perturbation I'. But, from Eqs. (5.2.46) and 
(5.2.47) we see that the first-order energies of the TGSs, that are given by 

c(l) = w(l) = w(l) 
k,xo O,k,-l,xo O,k,+l,xo 

9tm 2 + 9t k2 [l + ( ft + fs ~2 2) x o] ' 
9 s 9t g s gsm + k 

(5.2.51) 

are also independent of the magnetic field strength as in Minkowski space-
time. As we have seen before, this fact gives the TGSs a particular rele-
vance in the presence of strong magnetic fields because their energies are 
much smaller than the excited Landau levels. For this reason, in the follow-
ing I will only calculate the presence probability of a pair with the electron 
and the positron both in a TGS and then I need to compute only the one-
particle TGSs corrected up to first order. As in the previous Paragraph, 
I will present the calculations of the first-order corrections to the electron 
TGSs and I will quote the analogous results for the positron TGSs. 

The first-order corrections to a given zero-order electron TGS come from 
the coupling of this state with the following classes of states: 

l. the zero-order electron TGSs with the same energy ( all but the state 
to be corrected); 
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2. the zero-order electron TGSs with different energy; 

3. the zero-order electron states that are not TGSs; 

4. the zero-order positron states. 
Now, I suppose I want to calculate the first-order corrections to the TGS 
labeled by J0 = {0, k, -l, x0 }. The states in the first class are labeled by the 
quantum numbers {0, k, -l, x~} with x~ --f=. x 0 because they have the same 
energy of the state labeled by Jo. But, all the contributions vanish because, 
in generai, the perturbation (5.2.24) can not couple two modes of 1-l'(o) with 
the same n d an d two different x o an d x~. Similarly, the states in the second 
class are characterized by the quantum numbers {O,k',-l,x~} with k' --f=. k 
and, since [I', Pz] = O they do not give any contribution. Instead, the 
contributions from the states of the remaining two classes are, in generai, 
different from zero in such a way the state U~~l) ( r) can be written as 

u~~1)(r) = u~~O)(r) + L' p~~J'u~~O)(r) +L Q}~J,v;~o)(r) (5.2.52) 
J' J' 

where the primed sum does not include the TGSs and where [106) 

(1) _ l J J":L3 1(0)t ) 1 1(0) ( ) P Jo,J' - (O) (O) dry c/JsUJ' (r I U10 r , 
sk - w1, 

(5.2.53a) 

Q (1) _ l J r7J !(O)t 1 1(0) ( ) 
Jo,J'- (O) -(O) dry c/J;Vy (r)I U10 r . 

sk + wy 
(5.2.53b) 

In these equations I introduced the zero-order energies of the TGSs c~o) 
defined as [see Eqs. (5.2.28)] 

c(O) -= W(O) _- W-(0) -- g m2 + 9t k2 
<.;. t - . k O,k,-1,xo O,k,+1,xo g

8 

(5.2.54) 

Now, I start by calculating the coefficients P}~,J'· From the expression 
(5.2.24) of the interaction Hamiltonian and from Eq. (5.2.44) we have 

(1) l w}~) + V§im si0) + .;gtm 
p Jo,J' = (O) (O) 2 (O) 2 (O) 

sk - w1 , w1 , sk 

x { [ Vifi(fp- !M )m- 1; (w~~) + ci0)) + fEcio) l 
x j dr<1>1, ( r )x<l>j0 ( r) 

+ [ -.;gt(fp- !M )m- 1; (w~~)+ ci0)) + fecko) l :. 
l l J lt ( ) l l l ( ) } x (O) (O) drfP 1 , r V x V fP Jo r . 

sk + ..j9tm w 1, + .;gtm 
(5.2.55) 
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By using the orthonormal properties (5.2.43) of the functions <P~(r), I can 
write the quantities P~~J' as 

(l) - ( (l) . (1) ) 
PJo J' - Bk x bn' +l ba' -l - tCk x bn' oba' +l 8k' kbx' xo , , o , , , o , , , o• 

where I defined the coefficients 

((l) = l C~O) + y'gtm é~O) + v9im 
k,xo - c(O) _ (O) 2 eCO) 2 (O) 

0 k ék 0 k ék 

X [ v9t(!M- fp )m- f; (f~O) +ciO)) + fEciO)] 
9t k 

x 9s (&~0) + v9tm) (s~o) + y'gtm) 

with [see Eqs. (5.2.28)] 

e(O) := W(O) = W(O) = W(O) = W(O) 
k O,k,+l,xo l,k,-l,xo O,k,-l,xo l,k,+l,xo 

9tm2 + gt (k2 + 2eB) 
9s 

(5.2.56) 

(5.2.57a) 

(5.2.57b) 

(5.2.58) 

the zero-order energy of the first-excited Landau level. In the same way, I 
can write the coefficients Q}~~J' as 

Q}~J' 
- ( o(l) ~ ~ .E(l) ~ ~ F(l) ~ ~ ) ~ ~ - - k x Uni QUal +l+ t k X Un1 QUa' -1- k x Un' +1Ua1 +l Uk' -kUx' XO , o , , , o , ' ' o ' , ' Ol 

(5.2.59) 

(5.2.60a) 
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If I also define the coefficients A~~~o as 

A(l) =!Ex 
k,xo- 2 O 

101 

(5.2.61) 

then, the first-order TGS U~(l)(r) = U0
1(kl) _ 1 (r) can be written simply as 

o ' ' ,xo 

U.l(l) (r) 
O,k,-l,xo 

_ ( (l) ) 1(0) ( (l) 1(0) . (1) 1(0) ( ) 
- 1 + Ak,xo Uo,k,-l,xo r) + Bk,xoUl,k,-l,xo(r)- zCk,xoUO,k,+l,xo r 

- o(l) vi(O) (r) + iE(l) vi(O) (r)- F(l) vi(O) (r) 
k,xo 0,-k,+l,xo k,xo 0,-k,-l,xo k,xo 1,-k,+l,xo 

(5.2.62) 

( for the sake of clarity the explicit expression of the zero-order states appear-
ing in the right hand side of the previous equation are given in Appendix 

) 
(l) 1(0) ( 1(0) D . The term Ak x U0 k _1 r) = fExoU.0 k _1 x (r)/2 has been added to 

' o ' ' ,xo ' ' ' o compensate for the factor (1- fExo) in the scalar product (5.2.18) and then 
to ha ve the states correctly normalized up to first order, as 

(ul(l) ul(l) )Cl) = s , 
Jo ' Jb Jo,Jo 

where Jo = {O,k,-l,xo} and J~ = {O,k',-l,x6}. 

(5.2.63) 

Finally, with analogous calculations it can be shown that the first-order 
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positron TGS V~.~:+l,xo(r) can be written as 

v'(l) ( ) 
O,k,+l,xo r 

= (1 +A (l) ) V'( o) (r) + 8~1 ) v;'(?) (r) - iC(l) V'(~) (r) k,xo O,k,+l,xo k,xo l,k,+l,xo k,xo O,k,-l,xo 

- o(l) u.'(O) (r) + iE(l) u.'(O) (r)- F(l) u'(O) (r). 
k,xo 0,-k,-l,xo k,xo 0,-k,+l,xo k,xo 1,-k,-l,xo 

and that the satisfy the orthonormalization relations 

(v'(l) v'(l))(l) = 8 , 
Jo ' Jò Jo,Jo 

(v'( l) u'(l) )<l) = 0 Jo ' Jò . 

5.2.3 Calculation of the presence probability 

(5.2.64) 

(5.2.65a) 

(5.2.65b) 

As I have said in the previous Section, I can calculate the pair presence 
probability in the presence of the slowly-varying magnetic field (5.1.2) and 
of the stati c gravitational field described by the metric tensor ( 5.2.1) by 
means of the adiabatic perturbation theory up to first order in the time 
derivative of the magnetic field. In fact, from now on, the gravitational field 
will not play any further role: I took into account its presence by correcting 
the one-particle electron and positron modes and energies. Nevertheless, 
in order to avoid the possible confusion between the "first-order" relative 
to the adiabatic perturbation theory and the "first-order" relative to the 
gravitational couplings fE, fp and !M, I stress that in what follows I will 
always refer to the second one. In particular, the superscript (1) indicates 
quantities that are first-order in the gravitational couplings. 

Now, I pointed out in Par. 3.1.2 that in Minkowski spacetime if the 
magnetic field changes with time only in strength, the probability that a 
pair is present with both the electron and positron in a TGS is zero. In the 
following we will see that the first-order corrections to the TGSs I calculated 
before will make this probability different from zero in the present physical 
situation. In fact, the gravitational field lies in the x direction [see Eq. 
(5.2.1)] in such a way the first-order TGSs are not eigenstates of O"z as in 
Minkowski spacetime and then the selection rule (3.1.23) does not hold. 

lf the electron and the positron are assumed to be present at time t 
in the TGS state U~(l)(r,t) with J0 = {O,k,-l,x0 } and V1~~

1)(r,t) with 
o o 

lb = {0, k', +l, x~} respectively, then the presence matrix element is given 
by 

. exp 
· (l) ( ) _ fit eBt (t) j 1:3 t(l)t ( ( ) t( l) ( ) H 1 1, t - - dry g:;(l- fpx)UJ r, t) r x az V1, r, t . 

o o 9s 2 o o 
(5.2.66) 



Chapter 5 103 

The presence amplitude at time t can be calculated from this matrix element 
as 

(l) ( ) l {t l • (1) ( ') [. ( (1) (1) ) '] 
ìJolò t = s(l) + /~)' Jo dt HJolò t exp ~ sk,xo + sk',xb t 

k,xo k ,x0 

(5.2.67) 

where I used the fact that the first-order energies si~~o of the TGSs do not 
depend on B~xp(t) and then on time [see Eq. (5.2.51)]. 

Now, the selection rule (3.1.23) concerning the spin of two TGSs allows 
me to conclude that for the zero-order TGSs the following equalities hold: 

J !(O)t ( ) ( ) 1(0) ( ) drU10 r,t rXQzUJò t,r =0, (5.2.68a) 

J !(O )t ( ) ( 1(0) ( ) drU10 t,r rxQ)zVJò t,r =0, (5.2.68b) 

J !(O )t ( ) ( ) !(O) ( ) dr V i t, r r x Q z V-, t, r = O. 
JO lo (5.2.68c) 

By exploiting these equations and by keeping only the terms up to first 
order, I can write Eq. (5.2.66) as 

j[(l)_ (t) 
loJò 

{i! eB~xp (t) J r=3 l(O)t 
~ V 9s 2 dry 98Uo,k,-l,xo(t, r) (r x Q)z 

[B(l) ( ) 1(0) ( ) . (l) ( ) 1(0) ( ) x k' x' t vl k' +l l t, r - ~ck, l t vo k' -1 l t, r ' o ' ' ,xo ,xo ' ' ,xo 
.E(l) ( ) 1(0)t ( ) (l) ( ) 1(0)t ( )] +~ k' x' t Uo -k' +l x' t, r - F k' x' t Ul -k' -l x' t, r 

' o ' ' ' o ' o ' ' ' o 

+ fffi_ eB~xp (t) j dr r=3 [s (l) (t) u'(o)t (t r) V g; 2 V 98 k,xo l,k,-l,xo ' 

+ iC(l) (t)U:'(o)t (t, r)- iE(l) (t)V'(O)t (t, r) k,xo O,k,+l,xo k,xo 0,-k,-l,xo 

F(l) ( )T Tt(O)t ( )] ( ) 1(0) ( ) - k,xo t v 1,-k,+l,xo t, r r x Q z Va,k',+l,x6 t, r . 
(5.2.69) 

This expression can be further simplified if I use the definitions (2.1.21a) 
and (2.1.21c) of the operators x and y and the fact that the operator xo is 
diagonal with respect to the basis { u~(O) (t, r)' v}0) (t, r)}. In fact, in this 
way the operator ( r x Q) z becomes 

(r x a:)z = ia_ ( xo + iyo +.[!;a t) ~ia+ ( x0 ~ iyo +.[!;a) (5.2.70) 

with CX± = (ax ± iay)/2. Now, from the expressions (D.la) and (D.lb) 
of the zero-order TGSs I conclude that only the operator ia_(xo + iyo) 
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gives a nonvanishing contribution in the first integrai in Eq. (5.2.69) and 
that, analogously, only the operator -ia+(xo - iyo) gives a nonvanishing 
contribution in the second one. In conclusion, the matrix element (5.2.69) 
can be written as [see Eq. (2.1.15)] 

where 

(u~~1 ) (t) In-l v;~ l) (t)) 
o 

= j dr~u6~2,!-l,xo(t,r)a-
[ 

(l) ) t(O) . (l) ( t(O) ( ) x Bkl 1 (t V1 kl +l 1 (t, r)- zCk1 1 t)V0 kl _1 1 t, r ,xo ' ' ,xo ,xo ' ' ,xo 
. (1) ( t(O)t ( (l) ( ) t(O)t ( )] +zEkl,xb t)Uo,-kl,+l,xb t, r)- Fkl,xb t Ul,-k~,-l,xb t, r ' 

(5.2.72a) 

(5.2.72b) 

The calculation of the matrix elements (5.2. 72) is quite tedious but straight-
forward. In particular, i t can be shown that 

For this reason, the terms in Eq. (5.2.71) with the derivative with respect 
to x o cancel each other and the final expression of ii~~~~ (t) is 
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The creation amplitudes at time t can be calculated by means of Eq. 
(5.2.67) and the only one different from zero is equal to 

where only the first-order terms have been kept and where the time deriva-
tive of B~xp(t) has been substituted. Now, asI have said below Eq. (5.1.2), 
T is a macroscopic time connected with the typical evolution times of a black 
ho le, then I can safely assume t ha t s io) T >> l. This allows me to give an 
asymptotic estimate of the remaining integrai for large times t. The result 
is 

(l) ff:t k mxo Bt- Bi 
'"Yo,k,-l,xo;O,-k,+l,xo (t) rv -g ( (0))2 y'gt(fM- fp) 2. (O) Bi 

s 4 sk zsk T 

(5.2.76) 
Finally, by squaring the modulus of this expression and by multiplying the 
result by the number of states for large times [see Eq. (5.2.39)] 

Bexp(t)L L B e t Y dxo 2dk = e f dV(O) dk 
27r 27r 47r2 -R (5.2.77) 

with dV(O) = -R LyLzdxo the "physical" quantization volume up to zero 
order [see Eq. (5.2.2a)], I obtain the differential probability that a pair 
is present with the electron (positron) between x0 and x 0 + dxo and with 
longitudinal momentum between k and k + dk ( -k and -k- dk) as 

dP(l)(xo,k;t) rv (_h_)2 vf9s eBtk2 (Bt- Bi)2 (mxo)2dV(o)dk. 
l61rgs 9t (gsm2 + k2 ) 3 T Bi 

(5.2.78) 
In this equation the continuum limits Ly --+ oo and Lz --+ oo are understood 
and, since the probability is already proportional to fs and our calculations 
are exact up to first order in fs and ft, it is enough to use the zero-order 
"physical" volume dV(O). Finally, the corresponding probability per unit 
volume and unit longitudinal momentum is given by 

dP(1)(xo, k; t) rv (_h_)2 vf9s eBtk2 (Bt- Bi) 
2 (mxo)2. 

dV(0)dk l61rgs 9t (gsm2 + k2) 3 T Bi 
(5.2.79) 

It is worth pointing out that the presence of the square of the length xo 
in Eq. (5.2. 79) is the counterpart of the presence of Rj_M or Rj_m in the 
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presence probabilities calculated in Minkowski spacetime [see Eqs. (3.2.2), 
(3.2.31) and (3.2.45)]. Also, note that, as it must be, due to the presence 
of 9t in the denominator, the probability (5.2.79) grows as the expansion 
center Xc is moved towards the event horizon rc/4 [see Eqs. (5.2.3b)]. 

Finally, as I reminded in Sect. 3.2, in [88] it was calculated the total 
presence probability of a pair in the presence of a slowly-varying magnetic 
field with fixed direction but in Minkowski spacetime [see Eq. (3.2.2)].4 In 
order to have a quantity to be compared to the total probability per unit 
volume (3.2.2), I have to integrate Eq. (5.2.78) with respect to k. After 
this integration and indicating the resulting probability per unit volume as 
dP(1)(xo; t)jdV(O), it can easily be seen that5 

(5.2.80) 

where I assumed, for simplicity, that Bi rv BJ, that Rj_M = xo and that 
the magnetic field (3.2.1) is such that Bo= Bi and b = (Bt- Bi)/r. Now, 
asI have mentioned below Eq. (5.2.6), even very large values of N in Eqs. 
(5.2.4)-(5.2.6), Eq. (5.2.5) suggests that Xc can be chosen almost equal to 
re/ 4. In particular, I can evaluate the previous inequality approximatively 
by putting 9t = 4N(X/rc? g8 = 16 and fs= 64/rc [see Eqs. (5.2.3)]: 

dP(l)(x0 ; t)jdV(0) < _!._ {Ii;; 
dP~in(t)jdV rv N V 13;· (5.2.81) 

This quantity is in any case much less than one and then the gravitational 
effect is small in the present weak gravitational field approximation. Nev-
ertheless, the effect is there and it is reasonable to imagine that it can be 
amplified in the presence of a real gravitational field which is not restricted 
by the present assumptions. In particular, we will see that this is true in the 
strong-field case treated in the following Section. 

5.3 Strong-gravitational field case 

I have said that, as a generai aim of my investigation I consider the pro-
duction of particles by a nonstationary magnetic field, so I am interested in 
situations where the gravitational effects are not the dominant dynamical 
feature. In the previous Section, we have seen that if the electron-positron 
pair is present not too dose to the event horizon of a Schwarzshild black 
hole, the gravitational effects may be treated perturbatively. In order to 

41 remind that in that case either the electron or the positron must be created in a 
state which is not a TGS. 

5 We have to be satisfied of an order-of-magnitude comparison because the time evolu-
tion of the magnetic field used to obtain Eq. (3.2.2) is different from that used here. 
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complete the investigation I suppose here that the pair production happens 
near the event horizon where, because of the singularity of the spacetime 
metric, a perturbative approach is inapplicable. The investigation is stili 
possible because the isotropic metric (5.1.1) can be approximated in a form 
[the Rindler metric [108]], where the generai covariant Dirac equation is also 
solvable in the presence of a uniform magnetic field, provided the magnetic 
and the gravitational fields are parallel [109, 110). In this sense, the physi-
cal situation is different from that treated in the previous Section where the 
gravitational and the magnetic field were perpendicular [see Eqs. (5.1.2) 
and (5.2.1)). 

Following what I have just said, I want to consider here the case in which 
the pair is present microscopically speaking near the black hole event horizon 
lying at R = rc/4 [see Eq. (5.1.1)). Also, I choose the reference system in 
such a way the pair is created in a volume centered on the z axis. In this 
way, the same considerations clone at the beginning of the previous Section 
allow me t o expand the metri c tensor ( 5.1.1) aro un d the point (O, O, re/ 4). 
In particular, 

9oo(x,y,ra/4+z) = G;r +0 [ c:r], (5.3.1a) 

9ii(x,y,ra/4+z) = -16+0 C:) (5.3.1b) 

with z assumed to be positive. It is clear that I am only interested in the 
pairs created in the (z > 0)-region because those created in the (z < 0)-
region will fall into the black hole. 

Now, if I keep only the lowest-order nonzero term in 9p,p,(x, y, rc/4 + z) 
then the initial metri c tensor ( 5.1.1) can be written approximatively in the 
form 

91-!v( x, y, ra/ 4 + z) ""'g~~) (z) = diag [ G; r, -16, -16, -16] . (5.3.2) 

This metric tensor has the same form of a Rindler metric tensor describing 
an observer uniformly accelerated in the z direction [108). 6 Actually, the 
physical meaning of the previous coordinates is very different from that of 
the coordinates in Rindler spacetime. For example, while here the coor-
dinate t is precisely the time coordinate in the region far from the black 
hole, the time coordinate in the Rindler spacetime is a combination of the 
Minkowski time coordinate and of the Minkowski spatial coordinate along 
the acceleration. Nevertheless, the fact that the two metric tensors have the 
same form allows me to conclude that the metric tensor (5.3.2) describes a 

61 could have scaled the spatial coordinates in order to have exactly the Rindler metric 
tensor, but I prefer to work with x, y and z that are the Cartesian coordinates at infinity. 
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constant and uniform gravitational field in the z direction. Observe that no 
assumption is needed about the strength of the gravitational field itself. 

Now, I should pass to the mathematical description of the magnetic field 
that, actually, is identica! to that I have clone in Sect. 5.1 and it will not be 
repeated here. 

As previously, in order to calculate the pair presence probability, I have 
to build the second quantized Hamiltonian of a Dirac field w'(t, r) in the 
presence of the just introduced gravitational field and of the magnetic field 
(5.1.2). By choosing the diagonal tetrad field e~R)J.L(z) with 

(R)o( ) _ re e0 z --2z' 

eiR)\z) = ~ (no sum), 

(5.3.3a) 

(5.3.3b) 

the spatial connections f~ R) ( z) vanish w hile f ~ R) ( Z) is independent of Z an d 
it is given by 

r~R) = _1_1 o13. 
4re 

In this way, the Lagrangean density ( 5.1. 7) becomes 

f/'(R)(t) = 32[q,'(i8ow')- (i8oq,')w'J 

(5.3.4) 

+ 16z { q,t1'i[i8i + eA~:P(t, r)]w'- q,'[iBi- eA~:P(t, r)]1'iw'} 
re 

_ 128z mq,'w'. 
re 

(5.3.5) 

By using the same definition used in the previous Section, the Hamil-
tonian density of the Dirac field w'(t, r) can be written, apart from total 
derivative terms, as 

,_ye'(R) (t) = 64w'tH'(R) ( t)w' (5.3.6) 

with 

(5.3.7) 

the one-particle Hamiltonian of an electron in the presence of the magnetic 
field (5.1.2) in the spacetime with the metric tensor (5.3.2). 
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Now, the scalar product (2.3.37) between two generic spinors W'1(t, r) 
an d W 2 (t, r) becomes h ere 

( 'l/J1, 'l/J2)(R) = J dr 
128

z w t (t, r)IP',,rc W2(t, r) = 64 J dr w t (t, r)W'2(t, r) 
re 2z 

(5.3.8) 
and the one-particle Hamiltonian 1-[(R) (t) is Hermitian [this definition of the 
scalar product clarifies the presence of the numerica! coefficient 64 in Eq. 
(5.3.6)]. Finally, the total Hamiltonian of the system under study is 

H'(R) (t) = 64 J drW'l (t, r )1i'(R) ( t)W'( t, r) (5.3.9) 

and it depends explicitly on time through the time-dependence of the mag-
netic field [see Eqs. (5.3.7) and (5.1.6)]. Since also in this case I will apply the 
first-order adiabatic perturbation theory to calculate the pair presence prob-
ability, then in the next Paragraph I will determine the electron and positron 
modes of the t ime-independent counterpart of the one-particle Hamiltonian 
(5.3.7). 

5.3.1 Computation of the one-particle modes and energies 

In this Section, in order to compute the electron and positron one-particle 
modes and energies, I assume the magnetic field to be static, lying in the z 
direction and, in particular, to be given by Eq. (2.1.1). All the quantities 
that depend on time through the magnetic field B~xp(t), except the vector 
potential A~xp(t, r) and the magnetic field B~xp(t) itself that will be sub-
stituted by A'(r) and B' respectively [see Eqs. (2.1.4) and. (2.1.1)], will be 
indicated here with the same symbol used in the previous Paragraph but, 
of course, omitting the time-dependence. 

In the following, I limit myself to the determination of the electron one-
particle modes u; ( r) an d energies wJ where J embodies all the needed quan-
tum numbers. Since the magnetic field B' is parallel to the z axis, the 
eigenvalue equation 

1-l'(R)u' =w u' 
J J J (5.3.10) 

that is [see Eq. (5.3.7)] 

[:~{:X [-iOx + e~(y)] +i [-iOy +e~( x)]+ ,Bm} + ~; {z;!z}] u; 
=wJU~ 
(5.3.11) 

can be solved exactly [109]. In order to determine unambiguously the spinor 
basis, I require that the functions u; ( r) are also eigenstates of the conserved 
spin operator [7 4, 109] 

Sz = ';" - ~! {<>x [ -ié!y + e~(x)] - C>y [ -ié!x + eA~(y)]}. (5.3.12) 
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It is useful to write the corresponding eigenvalue equation in the form 

su'= .!5Lu' z J u 2m 1 (5.3.13) 

where u = ±l and k1 > O is a real parameter that, in generai, depends on 
the various quantum numbers. 

Now, Eqs. (5.3.11) and (5.3.13) have been solved together in [109] and in 
[110] (where the effect of the anomalous magnetic moment of the electron is 
also taken into account). Actually, in those papers another electromagnetic 
gauge for the vector potential A' ( r) is used but the calculations can be 
adapted straightforwardly to the present case. I only sketch the procedure 
to determine the electron modes u; ( r) by quoting the relevant steps. The 
first goal is to decouple Eq. (5.3.11) into a longitudinal part depending only 
o n z an d a transverse part depending only o n x an d y. This is achieved 
by multiplying Eq. (5.3.11) by Uz/3 and by exploiting Eqs. (5.3.12) and 
(5.3.13). The resulting "longitudinal" equation is 

(
4 k -. 38 - .Uz'"'f3- Uz'"'fo2wJrc) U'- O u J 'UJ z'"Y z 'l 2z z J - • (5.3.14) 

Since u z commutes with 1° and 13 and since {'"'fa, 1,6} = 2rya,6, if I square 
the previous equation I obtain 

(5.3.15) 

In or der to satisfy this equation I write the spinor u; ( r) as 

(5.3.16) 

w h ere N1 is a normalization factor, 

(5.3.17) 

are two 4 x 4 projectors, S~(x, y) is a spinor depending only on the transverse 
coordinates and M±_,1(z) are two functions to be determined. By substituting 
Eq. (5.3.16) in Eq. (5.3.15) I obtain the following equations for the functions 
M±_,1(z): 

{ d
2 

ld [ l (l )
2
]} dz2 + -;- dz - 16kJ + z2 2 ± 2iw1rc M~,J = O (5.3.18) 

whose generai solution is given by 

(5.3.19) 
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with l>..( e) and K>..(e) the modified Besse! functions [89]. Now, the functions 
l>..(e) diverge exponentially as e ~ oo while the functions K>..(e) goto zero 
exponentially in the same limit. Now, my model is reliable only for z <<re 
then I have to choose the solution that coherently is very small in the region 
of large z. For this reason I put al = O and aK = l in Eq. (5.3.19) and I 
obtain7 

(5.3.20) 

In order to determine the transverse spinors S~(x, y) I observe that 
[P±, Sz] = O, then by substituting the spinor (5.3.16) in Eq. (5.3.13) I 
ha ve 

[4mo-z- if3 {ax [-i8y + eA~(x)]- ay [-iox + eA~(y)] }] S~ = 4o-k1S~. 
(5.3.21) 

I observe that the energy eigenvalue w1 does not appear in this equation 
then, looking also at Eqs. (5.3.18) and (5.3.20), any continuous value w1 = 
E 2: O is acceptable. The fact that in the presence of the gravitational field 
described by the Rindler metric tensor {5.3.2} the energy of the electron has 
continuous eigenvalues from zero to infinity that do not depend on the other 
quantum numbers is the most relevant difference with the case in which no 
gravitational field is present. The physical origin of this difference lies on the 
fact that in the present case the linear momentum along the gravitational 
field is not a constant of motion. In other words, the "longitudinal" energy 
of the electron contains not only, as in absence of the gravitational field, the 
rest energy and the kinetic energy but also a negative gravitational potential 
energy. 

In order to solve Eq. (5.3.21) I square it, then 

[-&;-a;+ ( e:r (x2 + y2
) + eB (.Cz+ az)] 2~ = 16 (kJ- m 2

) 2~ 
(5.3.22) 

with Lz the z component ofthe electron orbita! angular momentum. The 
solutions of this equation are well known [73, 74]. Two nonnegative integer 
quantum numbers nd and n 9 have to be introduced and 

(5.3.23) 

can be interpreted as a sort of "transverse" energy of the electron in the 
spacetime with the metric (5.3.2). With this definition the spinor S~(x, y) 

71 point out that, since the behaviour of the functions h.(ç) is regular near ç =O, they 
will be used again later [see Eq. (5.3.36)]. 
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is given by 

( 

)knd + maB~d-l,ng (x, y) ) 
3' x = 3' x = l )knd - maB~d,ng (x, y) 

/ 'Y) nd,ng,o-( 'Y) 2~ ia y'k + maB' (x y) nd nd nd-l,n9 ' 

ia )knd - maB~d,ng (x, y) 
(5.3.24) 

where the functions B~ n (x, y) are given in Eq. (2.1.28). The functions dl g 
B'_1,n

9
(x, y) are not defined but this does not cause any problem because, by 

solving step by step Eq. (5.3.22), one finds that if nd = O then a must be 
equal to -l and the corresponding coefficient )knd + ma vanishes. Finally, 
I quote that the coefficients in Eq. (5.3.24) have been chosen in such a way 
the spinors 3~d n a(x, y) result normalized as , g, 

J dxdy3~dn a(x,y)3n'' n' ,..,(x,y) = 5ndn'5ngn'5aa'· 
1 g, d' 9'v 1 d 1 g 1 

(5.3.25) 

A t this point I ha ve t o determine only the normalization factor in E q. 
(5.3.16). As I have said, E is a continuous eigenvalue. For this reason if I 
require that the functions U1'(r) = U~d n a(E; r) are normalized as [see Eq. , g, 

(5.3.8)] 

(U~d n a(E), Un'' n' ,..,(E'))(R) = <S(E- E')<Snd n'5n9 n' <Sa a' 
l g, d' glv l d l g l 

(5.3.26) 

then, it is easy to show that the final form of the electron modes of the 
one-particle Hamiltonian is [see [109] for a more detailed derivation of the 
normalization factor] 

U~d, ng,a (E; r) 
,..---------
kndra cosh(27rEra) 

47r2 
X [P_Kl/2+2iEra( 4kndz) + P+Kl/2-2iEr0 ( 4kndz)]B~d,n9 ,a(x, y). 

(5.3.27) 

The physical meaning of the quantum numbers E and a is clear from 
Eqs. (5.3.10) and (5.3.13). In order to understand the physical meaning of 
the remaining quantum numbers nd and n 9 I introduce the z component 
:IP/2) of the total angular momentum operator and the operator 

(5.3.28) 

corresponding to the operator (2.1.13) in Minkowski spacetime. Now, it can 
easily be shown that the two previous operators commute between them, 
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with the time-independent form of the one-particle Hamiltonian (5.3. 7) and 
with Sz. Also, it can be shown that 

q(l/2) U' (E) - ( - - ~) U' (E) ~ z nd,ng,<T - nd ng 2 nd,ng,<T ' (5.3.29a) 

R2 U' (E) = 16(2n9 +l) U' (E) xy nd,ng,o- eB nd,ng,o- · (5.3.29b) 

Moreover, in the following I will use the operator P;y that is defined as [73] 

[( )2 ( )2] 2 x Py y Px 
p = 16 - + - + - - -xy 2 eB 2 eB (5.3.30) 

and that corresponds to the square of the radius of the helix along which a 
classica! electron moves in the presence of the n1agnetic field B' given in Eq. 
(2.1.1) and in the spacetime with metric tensor (5.3.2) [see [73]]. It can be 
shown t ha t the states ( 5.3. 27) are not eigenstates of P;y, but that if n d >> l 
then 

(5.3.31) 

In conclusion, the previous eigenvalue equations allow me to conclude that, 
as in Minkowski spacetime, the quantum numbers nd and n 9 are connected 
with the motion of the electron and of the positron in the plane perpendic-
ular to the magnetic field. 

The positron modes can be built in an analogous way and the final result 
is 

V~dn o-(E;r) 
' g, 

;------:-----:-
kng re cosh(27r Ere) 

47f2 
,:::.., 

X [P_Kl/2-2iErc(4kngz) + P+Kl/2+2iEr0 (4kngz)].=.nd,ng,o-(x,y) 

with 

(

io-Jkng- mo-B~g-l,n)x, y)) 
,:s1 ( ) = l io-Jkng + mo-B~g,nd(x, y) 
....... nd,ng,<T x, Y ~ _ lk B' ( ) · 2y kng V ng - mo- ng-l,nd x, Y 

Jkng + mo-B~g,n)x, y) 

These modes satisfy the eigenvalue equations 

Ji(R)y~d,ng,o-(E) = -EV~d,ng,o-(E), 

S V.' (E) = -a kng V.' (E) z nd,ng,o- 2m nd,ng,o- ' 

(5.3.32) 

(5.3.33) 

(5.3.34a) 

(5.3.34b) 
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.:JjV2)v~d,ng,U(E) =- ( nd- ng +D v~d,ng,u(E), (5.3.34c) 

R2 V:' (E) = 16(2nd +l) V:' (E) xy nd,n9 ,o- eB nd,n9 ,o- ' (5.3.34d) 

2 V:' (E) '"'"' 32ng V:' (E) Pxy nd,n9 ,o- - eB nd,n9 ,o- n9 >> l ( 5.3.34e) 

with the constraint that if n9 = O then a = +l and they are such that 

(V~d n o-(E), Vn'' n' ~,(E'))(R) = 8(E- E')8nd n'8n9 n'8o-o-' 1 
' g, d' 9'v 1 d 1 g ' 

(U~d,ng,o-(E), V~~,n~,o-'(E'))(R) =O. 

(5.3.35a) 

(5.3.35b) 

Finally, in Appendix E I show that the set of spinors U~d,ng,o-(E; r) and 
V~d,ng,o-(E; r) is complete. 

As usual, it is preferable to deal with normalizable modes then I have to 
find a convenient boundary condition at a given surface z = b that discretizes 
the energies E. Since the procedure is identica! for the electron and the 
positron modes, I will consider only the electron modes. Now, asI have said, 
the functions K 1;2±2iEra(4kndz) go exponentially to zero for large values of 
kndZ and goto infinity as (kndz)- 112 for small values of kndZ [89). For this 
reason, it is clear that 

l. the modes U~ n o-(E; r) can not satisfy a "zero" condition at a given dl g, 
knd b << l or a canonica! periodicity condition between two points 
kndbl << l and kndb2 >>l; 

2. if we want to build modes with a finite normalization integrai we have 
to modify the functions K 1; 2±2iEra(4kndz) in the region with kndZ << 
l. 

On the other hand, we already know that the modified Bessel functions 
Il/2±2iEra(4kndz) have a regular behaviour in the region kndZ <<l and that 
they also satisfy the longitudinal equation (5.3.18) [see Eq. (5.3.19)]. For 
this reason, I consider an arbitrary fixed surface z = b such t ha t knd b << l 
an d assume t ha t the electron modes of the o ne-parti cl e Hamiltonian an d of 
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the spin operator (5.3.12) are the spinors U~(r) defined as 

N(<) kndrc cosh(2?TEn,ndrc) 
J 4?T2 

X [P_Jl/2+2iEn,ndro(4kndZ) 

U~(r) = 
+P+Il/2-2iEn,ndro(4kndz)] S~d,ng,a(x,y) if z :S b 

N(>) kndrc cosh(2nEn,ndrc) 
J 4?T2 

X [P_Kl/2+2iEn,ndro(4kndz) 

+P+Klj2-2iEn,ndr0 ( 4kndz)] S~d,ng,a(x, y) if z > b 
(5.3.36) 

where J = {n, n d, n9 , a} with n a new integer quantum number characteriz-
ing the discrete energies ( as I will see the discrete energies will also depend 
on the quantum number n d) and where N}<) an d N}>) are two real normal-
ization factors to be determined. It is evident that the spinor u~ ( r) satisfies 
Eqs. (5.3.11) and (5.3.13) in the regions z < b and z > b [see also Eq. 
(5.3.19)]. Also, since Eq. (5.3.11) is a first-order equation in the variable z 
I only require that the spinor U~ ( r) is continuous a t z = b. By means of 
this condition an d by requiring that the norm of U~ ( r) is uni t, I make the 
energies discrete and determine the normalization factors N}<) an d N}>). 
The details of the calculations are given in Appendix F and here I only quote 
the final expression of the discrete energies [see Eq. (F.l6)] 

(5.3.37) 

and of the coefficients N}<) and N}>) [see Eqs. (F.4a) and (F.l8)]: 

N(<)= N(<) =_?T_ Jl + (4En,ndrc)2 l 
J n,nd 8kndb cosh(2?TEn,ndrc) ~ (5.3.38a) 

N(>) =N(>) = - 1-
J nd ~ (5.3.38b) 

with [see Eq. (F.l7)] 

(5.3.39) 

the density of the energy levels. Obviously, all these quantities will be used 
in the intermediate calculations but at the end I have to perform the limit 
b -t O and the physically relevant results must be independent of b. 
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5.3.2 Calculation of the presence probability 

We already know that, in order to obtain in the framework of the adia-
batic perturbation theory the presence probability of a pair in the presence 
of the slowly-varying magnetic field (5.1.2), I have to calculate the corre-
sponding presence matrix element. If the pair is present at time t with the 
electron in the state u~ (t, r) and the positron in the state v;, (t, r) with 
J = {n, n d, ng, a} and J' = {n', n~, n~, a'}, the presence matrix element is 
given by 

HJ~)(t) = (JJ'(t)iii'(R)(t)iO(t)) 

16eB;xp (t) J 1t ' = drU1 (t, r)z (xay- yax) Vp(t, r) 
re 

(5.3.40) 

[see Eqs. (5.3.9), (5.3.6) and (5.3.7)]. A more useful form of the previous 
matrix element can be given by using the matrices a± and the expressions 
(2.1.21a) and (2.1.21c) of the operators x and y: 

Now, asI have said at the end of the previous Section, in order to cal-
culate these matrix elements I should use the expression (5.3.36) of U~(t, r) 
with N~~r'L(t) and N~;)(t) given by Eqs. (5.3.38) and an analogous expres-
sion of VJ,(t, r).8 Actually, an easy power counting shows that the contribu-
tion of the integrai on the variable z from O to b goes to O in the limit b -t O. 
In fact, each spinor contains a factor [knd(t)b.Jlog(knd(t)b)]- 1 coming from 
N~~d(t) [see Eqs. (5.3.38a) and (5.3.39)]. Also, from Eq. (F.2a) we see that 
the modified Bessel functions hj2+2iEn,nd(t)ra(4knd(t)z) behave as .Jknd(t)z 
in the integration domain O ~ z ~ b. Finally, because of the presence of 
the z factor in the matrix element (5.3.41) the result of the integrai on z 
depends on b as knd(t)blog- 1(knd(t)b) and then it goes to zero in the limit 
b -t O. In this way, sin ce a t the end of the calculations the limi t b -t O has to 
be performed, the matrix element (5.3.41) can be calculated by using in the 
whole region z 2: O the expressions ofthe spinors U~(t,r) and VJ,(t,r) valid 
in the region z > b. Actually, I can use directly the spinors U~d n u(E; r) 

' g, 

and V', , ,(E';r) multiplied by NA;)(t) and Nn(;)(t) respectively because nd,n9 ,CJ 9 

the presence of the factor z in the matrix element (5.3.41) makes finite the 
81 remind that these quantities are now time-dependent because the magnetic field 

depends on time. 
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resulting integrai from O to oo [see also the generai formula (F.lO)]: 

32ieÈetxp (t) 
fi'(R) (E E'· t) -nd n crn' n' u' ' ' - ---,=.============ 

' 9' ' d' 9' re 2eB~xp ( t)gnd ( t)gn~ (t) 

x J drU:,td,ng,u(E; t, r)z[a_(ad +a~)- a+(a9 + a~)]V~~,n~,u'(E'; t, r). 
(5.3.42) 

At this point, I have to substitute Eqs. (5.3.27) and (5.3.32) [with the time-
varying magnetic field B~xp(t) instead of B] in piace of U~~,n9,u(E; t, r) and 
V~, n' ,(E'; t, r) and apply the various operators. By using the intermediate 

d• 9'U 
matrix elements 

J dxdy'B~dn u(t,x,y)P±a_S~, n' u'(t,x,y) 
, 9• d' 9' 

[knd(t)- ma] [kn' (t)- ma'] 
= (l ± i a) (l ::r i a') 9 5 ' 18 ' 

l 64knd(t)kn~ (t) nd,n9- n9,nd' 

(5.3.43a) 

J dxdy'B~d n u(t, x, y)P±a+Sn'' n' ,..,(t, x, y) 
) 9l dl 9'V 

= (l =f ia) (l ± ia') 
[knd(t) +ma] [kn' (t)+ ma'] 
------~9 ----5 l ,8 ' 

64knd(t)kn~ (t) nd- ,n9 n9,nd 
(5.3.43b) 

an d 

J dxdy'B~d-~t u(t, x, y)P±a_S~, n' ,..,(t, x, y) 
) 9l d' 9'V 

nd [knd (t) -ma] [kn' (t) -ma'] 
= (1 ± ia)(l ::r ia') 9 5 '8 ' 

l 64knd(t)kn~(t) nd,ng n9,nd' 
(5.3.44a) 

J dxdy'B~d+~t u(t, x, y)P±a+S~, n' u'(t, x, y) 
, 9> d• 9' 

n d [ knd (t) + ma] [ kn~ (t) + ma'] À , À 
1 = (1 =f ia)(l ± ia') u u 64knd ( t)kn~ (t) nd,n9 n9,nd 

(5.3.44b) 
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that can be easily checked, the matrix element (5.3.42) can be written as 

+ 

cosh(27r Ere) cosh(27r E're) 
2[eB~xp(t)]3 

(n9 +l) [knd(t) -ma] [knd+l (t) -ma'] 
(}nd (t) (}nd+l (t) 

X Re [(l- ia)(l + ia')Ind,nd+l(E, E'; t)] bnd,n~-lbng+l,n~ 

nd [knd(t)- ma] [knd(t)- ma'] 
(}~)t) 

X Re [(l- ia)(l + ia')Ind,nd(E, E'; t)] bnd,n~bng,n~ 

n9 [knd(t) +ma] [knd-l(t) +ma'] 
(}n d (t) (}n d -l (t) 

X Re [(l+ ia)(l- ia')Ind,nd-l(E, E'; t)] bnd-l,n~bng-l,n~ 

nd [knd(t) +ma] [knd(t) +ma'] 
(}~d(t) 

X Re [(l+ ia)(l - ia')Ind,n)E, E'; t) ]8nd,n~8n.,n~} 
(5.3.45) 

where the adimensional function 

lz,z'(E, E'; t) 

= 1oo dssK112-2iEra [ ~kz(t) s] KI/2+2iE'ra [J 4k!'(t) s] 
O J2eB~xp(t) 2eB~xp(t) 

(5.3.46) 

has been introduced. 
Before continuing, I want to point out that from Eq. (5.3.45) it can be 

seen t ha t the total angular momentum of the field w' (t, r) is conserved in 
the transition. In fact, in any case [see Eqs. (5.3.29a) and (5.3.34c)] 

l l l l l l 
nd - n - - + nd - n + - = nd - n + nd - n = O. g 2 g 2 g g (5.3.47) 

Of course, this selection rule is a consequence of the fact that the time 
evolution of the magnetic field does not break the rotational symmetry of 
the system around the z axis or, in other words, of the fact t ha t :T}1

/
2

) an d 
if'(R)(t) commute. 

N ow, sin ce I am interested only in the strong magneti c fie l d regime in 
which B~xp(t) >> Ber, I can simplify the expression of the transition ma-
trix element (5.3.45) by taking into account only those transitions whose 
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probabilities are proportional to the lowest power of Ber l B~xp (t). In the 
framework of the adiabatic perturbation theory the first-order transition 
amplitude in B~xp(t) of the presence of a pair at time t in the state with 
quantum numbers {E, nd, n9 , a; E', nd, n~, a'} is given by 

(R) (E E'· t) Ìnd n crn' n' a' ' ' , g, , d• 9' 

= l {t dt' jj'(R) . , , ,(E, E'; t') exp[i(E + E')t'] E+ E' j 0 nd,n9 ,a,nd,n9 ,a 
(5.3.48) 

and the corresponding probability is the square modulus of this quantity. 
It is evident that, since the energies E do not depend on B~xp(t), we 
can perform the (Ber l B~xp (t))-power counting directly o n the matrix el-
ement (5.3.45). To this end I need the generai behaviour of two particular 
classes of the integrai (5.3.46) that is of Io,n~(E,E';t) with nd >O and of 
Ind,nd(E, E'; t) with nd > O. By reminding the expression (5.3.23) with the 
time-dependent magneti c field for knd (t) an d by using the generai formula 
(F.lO), it can easily be seen that 

( 
1. ) rv 4 l Ber 

Io,n~ E, E' t nd6 B~xp(t) if nd > O and B~xp(t) >>Ber, (5.3.49a) 

Ind,nAE, E'; t) ~ n~ if nd >O and B~xp(t) >>Ber (5.3.49b) 

where, for later convenience, I also pointed out the dependence on the quan-
tum numbers nd and nd. Obviously, the integrals Ind,nd±l(E, E'; t) behave 
as the integrai ( 5.3.49b) an d then this criterion allows me to neglect the tran-
sitions in which the electron is in a ( nd = O, a = -1)-state or the positron 
in a (n9 =O, a= +1)-state [see Eq. (5.3.45)]. 

Another criterion I will use to select only the most probable transitions is 
the dependence of the corresponding probabilities on the quantum numbers 
nd and n 9. As previously, I can work directly on the matrix element (5.3.45) 
by keeping in mind that at the end I will sum the probabilities with different 
values of nd and n 9. Now, according to what I have said at the end of Chap. 
3, the internai consistency of the model requires here that the sum on n9 
(an d on nd) cannot be extended up to infinity but t ha t they must be stop p ed 
up to a certain N;xp(t) corresponding through the relation 

(5.3.50) 

to a fixed R_1_M [see Eqs. (5.3.29b), (5.3.31), (5.3.34d) and (5.3.34e)]. By 
reminding the physical meaning of the operators R'iy an d P'iy, i t is clear 
that the transverse motion of a classica! electron (positron) is confined in a 
circle with radius 2R_l_M, in such a way this quantity can be assumed as the 
radius of the quantization cylinder whose axis is parallel to the z axis. 
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Coming back to the matrix element (5.3.45), we see that it contains two 
kinds of terms, the first one being proportional essentially to y'rf9 and the 
second one to vfiid. By taking into account Eq. (5.3.49b) it is easy to see 
that the first kind of terms gives rise to final probabilities proportional to 
(N~xp(t)) 2 log N~xp(t), while the second one to final probabilities propor-
tional t o ( N~xp (t)) 2 . For ali these reasons I can consider only the transitions 
to states with nd > O and n~ > O in such a way only the following four kinds 
of transitions amplitudes result different from zero: 

(n9 + l)Jnd(nd +l) cosh(27rEra) cosh(27rE'ra) 
flnd (t) flnd+l (t) 

x Re (Ind,nd+l (E, E')) F(E E'· ) 
E+ E' ' 't' 

(R) (E E'· t) Fnd,ng,a;nd+l,ng+l,-a ' ' 

(n9 + l)Jnd(nd +l) cosh(27rEra) cosh(27rE'ra) 
flnd (t) flnd+ l (t) 

x Im (Ind,nd+l(E, E')) F(E E'· ) 
E+ E' ' 't' 

(R) (E E'· t) Fnd+l,ng+l,a;nd,ng,a ' ' 

w h ere 

(n9 + l)Jnd(nd +l) cosh(27rEra) cosh(27rE'ra) 
flnd (t) flnd+l (t) 

Re (Ind+l,nd(E, E')) F(E E'· ) 
x E+ E' ' 't' 

(n9 + l)Jnd(nd +l) cosh(27rEra) cosh(27rE'ra) 
flnd (t) flnd+l (t) 

Im (Ind+l,nd(E, E')) F(E E'· ) 
x E+ E' ' 't 

{t Bexp( t') 
F(E, E'; t) = Jo dt' Bfxp(t') exp[i(E + E')t'] 

(5.3.5la) 

(5.3.5lb) 

(5.3.5lc) 

(5.3.5ld) 

(5.3.52) 

and where I pointed out that in the strong magnetic field regime, if nd >O 
the integrals Ind,nd±l(E, E') do not depend on time. By squaring these 
amplitudes, by summing on the polarization () and by multiplying by the 
number of electronic states flnd (t )dE with energies between E an d E + dE 
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an d by the number of positronic states Pnd+ 1 (t) dE' with e n ergi es between 
E' an d E' + dE', I obtain the differential probabilities 

dP(R) (E E'· t) nd,ng;nd+l,n9 +1 ' ' 

= 2: 4 (n9 + l)Vnd(nd +l) cosh(27rEra) cosh(27rE'ra) (5.3.53a) 

X IInd,nd+l(E, E')l2 !F(E E'· t)12 dEdE' 
(E+E') 2 ' ' ' 

dP(R) (E E'· t) nd+l,n9 +1;nd,ng ' ' 

= 2: 4 (n9 + l)Vnd(nd +l) cosh(27rEra) cosh(27rE1ra) ( ) 
Il 5.3.53b 

X IInd+l,nd(E, E')l2 !F(E E'· t) 12 dEdE' 
(E+E')2 ' ' 

that, as expected, do not depend on the unphysical parameter b. Now, 
I want to calculate the probability dP(R) (E, E'; t) t ha t a pair is present 
at time t with the electron with energy between E and E + dE and the 
positron with energy between E' an d E' + dE'. To do this I ha ve to sum 
o n the remaining quantum numbers n d an d n9 . As we already know, both 
the series on nd and n9 are diverging, then I can perform the summations 
by assuming n9 ~ n9 +l and nd ~ nd +l because the most relevant terms 
are those with n9 >> l and nd >> l. Starting from Eqs. (5.3.53) we have 

where N~xp(t) has been defined in Eq. (5.3.50). 
The next step is the explicit calculation of the functions Ind,nd(E, E') 

and F(E, E'; t) defined in Eqs. (5.3.46) and (5.3.52). By using the generai 
formula (F. lO) and the properties of the r function (F.5) and [89] 

with ~E lR (5.3.55) 

it can easily be shown that 

In n (E, E') = 1r l -i( E- E')ra 1r(E + E')ra . 
d, d 2nd cosh [1r(E- E')ra] sinh [1r(E + E')ra] (5.3.56) 
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Instead, after some calculations the following expression of F(E, E'; t) 
can be obtained: 

itfr B B 
F(E,E';t)= ds'B (B 1; )i ( ')exp[-s'+i(E+E')Ts'J 

o f + i - f exp - s 
(5.3.57) 

with s' = t'/ T. N ow, as usual I am interested only in energetic electrons 
an d positrons such that ET >> l and E' T >> l an d in large times. For this 
reason, I can give the following asymptotic estimate of the integrai (5.3.57): 

F(E E'·t) rv BJ-Bi i 
' ' Bi (E + E')T 

(5.3.58) 

By substituting this expression and Eq. (5.3.56) in Eq. (5.3.54), I can write 
the asymptotic value of the probability dP(R)(E, E'; t) as 

dP(R)(E E'· ) rv ~ (eB!RlM)21 (eBJRlM) (Bf- Bi)2 4 
' 't 1r 64 og 32 BiT re 

x l+ [(E- E')re]2 b(ra)(E E')dEdE' 
re[(E + E')re]2 ' 

(5.3.59) 

where I made the substitutions valid for large limes [see Eq. (5.3.50)] 
Nexp(t) 

~ = ~(Nexp( ))2 = ~ (eBJRlM)
2 

L..t ng 2 t t 2 32 ' 
n 9 =1 

(5.3.60a) 

Nexp (t) t 2_ = log (Nexp(t)) = log (eBJRlM) 
nd=l nd t 32 

(5.3.60b) 

and where the function 

8(ra)(E E')= 1rre cosh(27rEre)cosh(27rE1re) 
' 2 cosh2 [1r(E- E')re] sinh2 [1r(E + E')re] 

(5.3.61) 

has been introduced. I pointed out the dependence of 8(ra)(E, E') on the 
Schwarzshild radius re because from a physical point of view I am interested 
in energies E an d E' su eh t ha t Ere >> l an d E're >> l. In this energy 
region the function 8(ra) (E, E') strongly depends even on small changes of 
E andE' through the hyperbolic functions. This can be seen more clearly 
by writing Eq. (5.3.61) as 

8(ra)(E E')= 1rre cosh[27r(E- E')re] + cosh[21r(E + E')re] 
' 4 cosh2 [1r(E- E')re] sinh2 [1r(E + E')re] 

~e{ l l } 
= -2- sinh2 [1r(E + E')re] + cosh2[1r(E- E')re] · 

(5.3.62) 
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From this expression and by reminding that E, E'~ O, I obtain 

lim 8(rc) (E, E') 
rc-+oo 

r 1rre { l 1 } 
= rc1~oo -2- sinh2[1r(E + E')re] + cosh2[1r(E- E')re] (5.3.63) 

= lim 1rr e = {O if E # E' 
rc-+oo 2 cosh2 [1r(E- E')re] oo ifE= E'. 

Finally, by observing that 

1r loo re dE' { 00 dry 
2 -oo cosh2 [1r(E- E')re] =lo cosh2 'f} = 

1
' 

(5.3.64) 

I can conclude that 

lim 8(rc)(E, E') = 8(E- E') 
rc-+oo 

(5.3.65) 

and then that 

8(rc)(E, E') rv 8(E- E') ifE, E'~ O and Ere, E're>> l. (5.3.66) 

With this result and by integrating Eq. (5.3.59) with respect to the positron 
energy E', I finally obtain the probability t ha t an electron is present a t large 
times with an energy between E and E+dE such that Er >>l and Ere>> l 
in the form 

dP(R)(E) rv _!_ (eBtRlM)21 (eBtRlM) (Bt- Bi)2 redE_ 
47r 64 og 32 rBi E 2 

(5.3.67) 
In order to obtain a probability per unit volume I have to give an estimate of 
the height of the quantization cylinder. Now, I have said that the modified 
Bessel functions Kl/2±2iErc(4knd(t)z) (I referto the electron wave functions 
but an identica! conclusion can be drawn for the positron ones) are exponen-
tially decreasing as knd (t) z >> l. In particular, i t can easily be shown t ha t 
if Ere>> l the exponential behaviour of the function Kl/2±2iErc(4knd(t)z) 
for large times starts at 

2Ere 2Ere 
zo = < . 4knd (t) - vf2dJj (5.3.68) 

For this reason I can assume Lz = 2Ere/ vf2dJj and 

V = 1r(2R1_M )2 2Ere = 81r EreRlM 
vf2dJj vf2dJj 

(5.3.69) 
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as the volume of the quantization cylinder in such a way 

dP(R)(E;t) rv .!_ (eBf)
5
1

2

10 (eBJRlM) (BJ- Bi)
2 

R}_M. 
dVdE 7r 128 g 32 TBi E3 (5·3·70) 

This probability does not depend on the electron mass nor on the gravita-
tional radius of the black hole but this is due only to the fact that I am 
working in the strong magnetic field regime and in the high-energy region. 
Instead, it is not so obvious how to explain the dependence of the final pres-
ence probability (5.3.70) on the logarithm of Rl_M· Now, before comparing 
Eq. (5.3. 70) to the analogous result Eq. (3.2.2) where no gravitational field 
effects were taken into account I have to integrate Eq. (5.3.70) with respect 
to the electron energy. Nevertheless, I stress that also in this case the com-
parison can be only qualitative because a linear dependence on time of the 
magnetic field was used to obtain Eq. (3.2.2). Before doing that, I note that 
the presence probability scales here as E-3 in the high-energy region while 
in the preceding case the corresponding probability per unit longitudinal 
momentum k behaved as k-4 [see the details in [88]]. This means that the 
production of high-energy electrons (positrons) is favoured in the presence 
of the gravitational field. Now, to be coherent with the approximations I 
have made, I perform the integration of Eq. (5.3. 70) from Em = 100 r(J1 to 
infinity in fact, by assuming T= l sand re= 3.0 x 106 cm as fora 10 solar 
masses black hole, i t also results Em T >> l. By indicating the resulting total 
probability per uni t volume as dP(R) (t)/ dV, I obtain 

dp(R)(t) rv _! (eBJ)5/2log (eBJRlM) (Bf- Bi)2 R}_M. (5.3.71) 
dV 7r 64 32 TBi E~ 

In generai, the presence probability per unit volume depends here on the 
(5/2)-power of the magnetic field strength while in Eq. (3.2.2) it depended 
on its (3/2)-power [remind that in Eq. (3.2.2) b = _B~in(t)]. To give a 
more quantitative estimate I use the typical values R1_M = 105 cm, Bi rv 

BJ = 1015 gauss and I assume the magnetic field (3.2.1) to be such that 
B~in(t) rv Bo =Bi and b = (BJ- Bi)/T. In this way I obtain [see also Eq. 
(3.2.2)] 

dP{in( t) rv E!, = 6. 7 X 10-29 
dP(R)(t) eBJ (5.3. 72) 

that clearly allows me to conclude that the effects of the gravitational field in 
the pair production processare really relevant and they can not be neglected 
at all. 

5.4 Summary and conclusions 

This Chapter has been devoted to the study of the effects that the presence 
of a gravitational field can have on the production of electron-positron pairs 
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in the presence of a strong, uniform and slowly-varying magnetic field. The 
motivation of this analysis comes from the fact that in the model I have in 
mind the pair production is assumed to happen near astrophysical compact 
objects such as magnetars or black holes. Then, it is reasonable that, espe-
cially in the last case, the gravitational effects can be relevant. Two different 
physical situations have been treated here: in the first one the pair is imag-
ined to be produced far from the black hole event horizon (Sect. 5.2) and 
in the second one it is assumed to be produced near the black hole event 
horizon (Sect. 5.3). In both cases the presence of the gravitational field 
has been taken into account only in the determination of the electron and 
positron one-particle modes and energies while the calculation of the pair 
presence probabilities has been performed by using the first-order adiabatic 
perturbation theory. 

In particular, if the pair is prod uced far from the black hole event hori-
zon, the effects of the gravitational field have been treated perturbatively. 
I ha ve shown how the modified one-particle modes an d energies of the elec-
tron and of the positron reflect on the pair presence probabilities [see Eq. 
(5.2.79)]. In particular, I have examined the case of the production of a pair 
in the presence of a magnetic field varying only in strength and always per-
pendicular to the gravitational field. Firstly, I have found that the presence 
probability contains a factor 9t 1 t ha t makes i t growing an d growing as one 
gets closer and closer to the event horizon of the black hole. More impor-
tant, I have also obtained a new new qualitative result: even in the presence 
of a weak gravitational field, even if only the strength of the magnetic field 
changes with time it is possible to create a pair with both the electron and 
the positron in a TGS. Actually, this probability is a small quantity with re-
spect to the total probability that a pair is created in Minkowski spacetime 
in the presence of a time-varying magnetic field with fixed direction [ see Eq. 
(5.2.81)], but this result is a consequence of the fact that the gravitational 
field has been treated perturbatively. From this point of view, the informa-
tion we have gained is that in the presence of a gravitational field this new 
effect is there. 

Instead, if the pair is produced near the black hole event horizon, the 
situation is very different mostly because the one-particle energy of the elec-
tron {positron) is an independent continuous nonnegative quantum number. 
Also in this case, I have considered a situation in which the magnetic field 
does not change its direction with time but, here, always remaining parallel 
to the gravitational field. In this case [see Eq. (5.3.70)] we have seen that 
the presence probability depends on the (5/2)-power of the magnetic field 
strength while the analogous quantity in Minkowski spacetime depended 
only on its (3/2)-power. Also, the presence probability scales here as E-3 

in the high-energy region while in the flat-spacetime case the probability 
behaved as k-4 with k ( -k) the longitudinal momentum of the electron 
(positron). In this way, the production of high-energy electrons (positrons) 
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is strongly favoured in the presence of the gravitational field. Moreover, the 
ratio (5.3. 72) allowed me to safely conclude that the effects of a strong grav-
itational field in the pair production process are dramatically important and 
they can not be neglected at all. A final observation concerns the fact that 
the presence of a strong gravitational field makes possible the creation of 
pairs that can not fly to infinity because they do not have enough energy 
(as I have said, the one-particle energy spectrum of the electrons and of 
positrons extends down to zero). These electrons ( positrons) created with 
such energies annihilate inside the gravitational field producing low-energy 
photons which may fly away and, eventually, contribute to the low-energy 
part of the GRBs spectra. 
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In this Appendix I study the generai features of the presence amplitudes 
of pairs in which the electron and/or the positron is not in a TGS in the 
presence of the rotating magnetic field (3.2.3). Firstly, I write the corre-
sponding presence matrix elements by using the compact notation iijj'(t) = 
(jj'(t)IH(t)IO(t)) [see Eq. (3.1.14)). In this way, since in the presence of a 
purely rotating magnetic field these matrix elements and the energies Wj(t) 
and wj'(t) are actually time-independent, the corresponding amplitudes are 
given by [see Eq. (3.1.13)) 

(A. l) 

The presence matrix elements different from zero are 

(A.2a) 

(A.2b) 

(A.2c) 

[ ( , 2 ) 2ni 1( L z) . ( ) ] = O.Njj' a kk - Wjj' Lz 5K - zk 2nd+ l 5k,-k' , 

(A.2d) 

Hnd,k,-1,n9 ;n9 +1,-k,-1,nd-1 (t) = Hnd,k,-1,n9 +1;n9 ,-k,-1,nd-1 (t) 

= -2ikO.NJJ'Vnd(n9 + 1), 
(A.2e) 
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Hnd,k,+l,n9 ;n9 +1,-k,+l,nd+l (t) = Hnd,k,+l,n9 +1;n9 ,-k,+l,nd+l (t) 

= 2ik0.Njj'V(nd + l)(n9 + 1), 
(A.2f) 

Hnd,k,+l,n9 ;n9 ,k',+l,nd+2( t) = Hnd+2,k,-l,n9 ;n9 ,k1,-l,nd (t) 

( 
27ri !(Lz)) . J 

= -20-Njj' ik8k,-k' + eB7 Lz 8K v (nd + 2)(nd + 1). 

In order to simplify the previous formulas I defined the quantities 

.!lk = k'- k, 
K = k' +k, 

w}j' = (wj + m)(wj' +m), 

eB7 N··,---
11 - 2W?., 

JJ 

w1 +mwJ' +m 
2wj 2wF 

(A.2g) 

(A.3a) 
(A.3b) 

(A.3c) 

(A. 3d) 

Also, by reminding the quantization conditions ( 2.1.30), I note that the 
function 8~(Lz) in Eqs. (A.2) defined as 

'(Lz) l 1ft . {O ifk=O 
8k = ~ L dz zexp( -'lkz) = h (-I)l if k = 27rl _j_ O 

'lf'l -!7{ 21r k Lz r ' 
(A.4) 

becomes the derivative of the 8 function in the limit Lz-+ oo. 
All the previous matrix elements can be divided into two groups: the ones 

related to transitions in which the longitudinallinear momentum conserves 
and the others characterized by the presence of the function 8~Lz) in which 
it does not. Of course, this fact is due to the dependence of the transition 
operators Tjj'y(t) on z [see Eq. (3.2.5)]. 

Finally, I observe that if one sums the probabilities corresponding to the 
previous matrix elements by n1eans of Eq. (A. l) with respect to the quantum 
number nd, all the series converge. Only the series corresponding to the 
matrix elements (A.2b) diverges logarithmically and it is not so obvious 
how to give a physical interpretation of such a kind of divergence. However, 
we can understand qualitatively why the probability of creating a pair with 
larger and larger nd and then with larger and larger energy decreases so 
slowly. In fact, the quantum number nd is also connected with the radius 
p1_ of the helix along which a classica! electron performs its motion (see Fig. 
2.1). In particular, i t can be shown t ha t Pl rv n d [73]. From this point 
of view, while creating, for example, an electron with larger and larger nd 
needs an amount of energy proportional to y'rid [see Eq. (2.1.19a)], the 
electron wave function extends over a volume that also increases with nd, in 
such a way that the magnetic energy available for the electron creation also 
increases with nd. 
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I want to show here with some detail why the function f(k, t)dk given in 
Eq. (4.1.2) can be interpreted as the mean number of electrons (positrons) 
per unit volume present at time t with a longitudinal momentum between 
k and k+dk. 

The argument I propose is closely related to the treatment given in [ 111] 
in dealing with multiple soft photon production. Firstly, I remind that since 
I am considering the production from vacuum of electron-positron pairs up 
to first arder in the adiabatic perturbation theory, the vacuum persistence 
probability is one [see the discussion below Eq. (2.2.10)]. Also, following 
the adiabatic perturbation theory, f(k, t)dk represents the probability per 
unit volume that a pair is present at time t with the electron with a longitu-
dinal momentum between k and k + dk and the positron with a longitudinal 
momentum between -k and -k- dk. Since there is a sharp correlation be-
tween the electron and the positron quantum numbers, f(k, t)dk is also the 
probability per unit volume that an electron is present at time t with a longi-
tudinal momentum between k and k + dk or, symmetrically, that a positron 
is present at time t with a longitudinal momentum between k and k + dk 
[note from Eq. ( 4.1. 2) t ha t f ( k, t) = f (-k, t)]. Then, the total probability 
that an electron is present a t time t is given by the integrai J dkdV f ( k, t) 
where dV = LzdA1_ = Lz1rdRJ_M. Since no interaction is introduced among 
the particles produced, I would conclude that the probability of finding at 
time t two electrons with a longitudinal momenta between k and k + dk 
an d between k' an d k' + dk' respectively is f ( k, t) f ( k', t) dkdk' dV dV' an d 
so on. But, really, I must take into account the overall conservation of the 
probability, then, by summing all the terms and by taking into account that 
the particles are indistinguishable, I get the normalization factor 

N(t) [l+ J dkdV f(k, t)+~ J dkdk'dV dV' f(k, t)f(k', t)+ ... ] = l, 

(B.1) 
that is 

N (t) = exp [- j dkdV f ( k, t)] . (B.2) 

In conclusion, the total probability that r electrons are present at time t is 
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given by 

:! [! dkdV f(k, t) r exp [- j dkdV f(k, t)] (B.3) 

which is a Poissonian distribution in the number of electrons present. This 
allows me to interpret the quantity J dkdV f ( k, t) as the mean number of 
electrons present at time t and then f(k, t)dk as the mean number of elec-
trons per unit volume present at time t with a longitudinal momentum 
between k and k + dk. 

In the previous description the pair is treated as an effective boson. This 
is allowed when the production rate is low, so there is a little chance of having 
two electrons in the same cell of the phase space, where the Pauli princi-
ple would play the dominant role ( the two electrons would be necessarily 
correlated). In or der to check the consistency of this treatment I compare 
the mean number of electrons produced with the number of available quan-
tum states in the same conditions. The number of the electrons produced 
per unit volume and unit longitudinal momentum is given, according to the 
previous discussion, by the function f(k, t), while the number of available 
quantum states per unit volume and unit longitudinal momentum is [106] 

n(k) = ~ eBr = eBr 
27r 27r 47r2 (B.4) 

where I have not considered the spin factor because in the present problem 
the electrons created have fixed spin direction [see Eq. (3.2.7)]. In this way, 
the ratio f(k, t)/n(k) is always less than 

- OR1_M__L 1 ( B )
2 

32 Ber 
(B.5) 

But, by following the same technique used to obtain the strong inequality 
(3.2.43), one sees that the quantity O.Rl_MBr/Bcr must be much less than 
one in order that the first-order adiabatic perturbation theory can be safely 
applied, then all the previous description is coherent. 
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In this Appendix I want to calculate the matrix element uQv [see Eq. ( 4.1.5)] 
of the pair annihilation into two photons process by using not the electron 
propagator in vacuum as in the main text but the so-called Schwinger prop-
agator [5] that is the electron propagator in the presence of a constant and 
uniform magnetic field that I will indicate as B( = (0, O, B1 ). The structure 
of the Schwinger propagator is, in generai, very complicated but it simplifies 
in the strong field approximation ( B 1 >> Ber) in which I am working. In 
this case the propagator is obtained as a sum only over all the TGSs of the 
electron and of the positron and, working in the symmetric gauge (2.1.42), 
i t is given by [96]: 

G'( t, r, t', r') = exp [i e~r (xy'- x'y)] d (t- t', r- r') (C. l) 

where (t, r) and (t', r') are two fourpoints and where 

with R = (X, Y, Z) and with TI_ =(l- O'z)/2 is the spin-down projector. 
If I use the usual notation for the photon field [see for example [97]], 

the transition amplitude of the pair annihilation into two photons can be 
written as 

s~,n',À,À'(k, k', q, q') = -47rll<em J dtdrdt' dr' 

x v~, k'(r) exp( -is't)--,/)~iG'(t, r, t', r')''/u~ k(r') exp( -ist') 
' ' 

{
(eq>.)a (eq'N)f] ,, , ')] x Jivw exp[i(wt- q· r)] ~ exp[i(w t -q · r 

2Vw 2Vw' 

+ (eq,>.)a exp[i(wt'- q· r')] (eq',>.')f] exp[i(w't- q'· r)J} 
J2Vw v2Vw' 

(C.3) 
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where the initial electron and positron are assumed to be in the TGSs 
u~,k(r') with energy c = s(k) = V'm2 + k2 and v~,k(r') with energy s' = 

s(k') = V'm2 + k'2 respectively and where the final photon states are those 
described in the main text before Eq. ( 4.1.5) (V is the quantization volume 
an d the limi t of large V is understood). In the following, I will calculate 
only the first amplitude in Eq. ( C.3) corresponding to the creation of the 
photon (q, À) in (t, r) an d of the photon (q', À1

) in (t', r') and I will call i t 
S~~~',À,N(k, k', q, q'). The second amplitude can be calculated in an analo-
gous way. 

Now, from Eqs. (2.1.35) one notes that the difference of the TGSs with 
those of the electrons (positrons) freely propagating along the z axis with 
spin down ( up) lies only in the dependence o n the transverse coordinates 
[97). By inserting Eqs. (2.1.35) and the Schwinger propagator in Eq. (C.3), 
I observe that the integrals on the time variables and on the longitudinal 
variables can be performed exactly. In fact, they give two 8 functions that 
allow to calculate the integrals on W and on K in the Schwinger propagator 
and that guarantee the energy and the longitudinal momentum conservation. 
In this way, the amplitude S~~' À N(k, k', q, q') can be written as , , ' 

s'(l) (k k' ') - 27raem Q'(l) (k k' ') 
n n' À N ' 'q, q - L V r-:-;1 n n' À N ' 'q, q 

' ' ' z vww· ' '' (C.4) 
x (27r) 28(k + k'- qz -·q~)8(s +s'- w- w') 

where Lz is the length of the quantization volume in the z direction. In this 
expression I defined the transition matrix element 

1(l) ( , ') ( s + m) (s' + m) , ( , , ) 
Qn,n',À,N k, k 'q, q = 2s2s' Nn,n' qx, qy, qx, qy 

x (o - k' o- 1) 
c'+m 

a -y0(w- s')- -y3 (qz- k') +m 
x 'Y ( eq,À)a (w_ s')2 _ (qz _ k')2 _ m2 (C.5) 

o 
l 

x IJ_-yf3(eq',N),e O 
k 

s+m 
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where the function 

depends only on the transverse momentum variables qx, qy, q~ and q~. 
The transition amplitude (C.4) is to be compared with the analogous 

calculated in the vacuum [see for example Eq. (25.9) in [95]] 

s(l) (k k' ') - 27rO:em Q(l) (k k' ') s s' .>. .>.' ' ' q, q - y2 ;--;1 s s' .>. .>.' ' ' q, q ''' vww· ''' (C.7) 
x (27r)48(k + k'- q- q')8(s +s'- w- w') 

with, for an electron moving along the z axis with spin down and a positron 
moving along the same axis with spin up, 

Q (l) (k k' ') - Q(l) (k k' ') s,s',.>.,.>.' ' ,q,q = .>.,.>.' ' ,q,q 

( s + m) (s' + m) (o k' 0 _ 1) 
2s2s' s'+ m 

Q: ,o(w- s')- {lqx- [2qy- r3(qz- k') +m (3 
x r (eq,.>.)a ( ')2 2 2 ( k')2 2 r (eq',.>.')(3 w - s - qx - qy - qz - - m 

o 
l 

x o 
k 

s+m 
(C.8) 

Now, suppose that the transverse momenta of the outgoing photons are 
much smaller than the electron mass m. In this approximation the matrix 
element in the vacuum has a weak dependence on them. In the same way, 
since m 2 /e= Ber<< Br then qx << Jelfi, qy << Jelfi, q~<< Jelfi and 
q~<< Jelfi and from Eq. (C.6) we see that in this case N~,n'(qx, qy, q~, q~) 

[and then S~~' .>. .>.'(k, k', q, q')] does not depend on the magnetic field. In 
particular, ' ' ' 

(C.9) 

that is, the transverse structure of the electron and positron states does not 
influence the matrix element Q~1l, .>. .>.'(k, k', q, q'). Also, by comparing Eqs. 

' ' ' 
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(C.5) and (C.8), one sees that in this approximation the matrix element in 
the presence of the magnetic field B/ and the matrix element in the vacuum 
have a very similar structure. These observations give me the possibility to 
conclude that one is allowed to use the approximated treatment leading to 
Eq. (4.1.5} when the photons have small transverse momenta compared with 
the electron mass m. This situation is verified trivially when the electron and 
positron momenta are small compared with m but also when the incoming 
particles are in the ultrarelativistic regime: in fact, in this case, the photon 
prod uction shows a pronounced peak in forward an d backward directions 
[112). Instead, when the transverse mmnenta of the photons are not small, 
Eqs. (C.6) and (C.8) suggest that the corrections to the matrix element 
in the presence of the magnetic field B( are proportional to the quantities 
qxf yetfi, qy/ yetfi, q~/ yetfi and q~/ yetfi while those to the matrix 
element in the vacuum are proportional to qx /m an d qy /m. In particular, by 
performing the Fourier transform of the Schwinger propagator one sees that 
it contains exponential terms in the squared transverse momenta and this 
implies that, by using the "vacuum" quantities to calculate the differential 
cross section da(k, k', w)jdw in Eq. (4.1.3), one overestimates the number 
of photons emitted with large transverse momenta. 
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I want to give here the explicit expression of the zero-order electron and 
positron TGSs and the zero-order electron and positron states corresponding 
to the first-excited Landau levels. I remind that I used them to calculate 
the transition matrix elements (5.2.72). These states can be easily obtained 
by substituting Eq. (2.1.25) in Eqs. (5.2.44) and (5.2.48) 

U'(O) r =_l_ 
O,k,-l,xo( ) 4/:3 v9s 

x ( e~,xo~x, y) ) exp(ikz) 
fii. l ( o ) vr; ' 

-V 9s et o) +y'gtm k8~,xo (x, y) 

(D.la) 

V'(O) r -_l_ €~0) + y'gtm 
O,k,+l,xo( ) - 4/:3 2 (O) 

V 98 Ek 

(-[f;.io)+~m (ke~,x~(x,y))) exp(-ikz) (D.lb) 
x o fT . vLz 

e~,xo(x, y) 

U'(O) r - l 
O,k,+l,xo ( ) - 4/:3 v9s 
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U'(O) r =_l_ l,k,-l,xo ( ) 4/:3 v9s 

e~,xo (x, y) exp( ikz) 
( 

o ) 
x _ !ili_ 1 (i/2eB8~,xo(x, y)) .;t;; ' v 9s e1o) +y'Ytm k8~,xo (x' y) 

(D.ld) 
{O) 

y'{O) r - _l_ &k + vf§tm 
D,k,-l,xo( ) - ~ 2&ko) 

x V 9s E~0)+Ktm_ 1 i/2eB8~,xo(x,y) exp(-ikz), 
( 

fili. 1 ( -k8~,x0 (x, y) )) 

-8o,xo(x, y) .;t;; 
o 

(D.le) 
(O) 

V,'(O) r __ 1_ &k + vf§tm 
l,k,+l,xo ( ) - ~ 2&k0) 

x V 9s Ek0
) +y'Ytm - k8~,xo (x, y) exp( -ikz) . 

( 

fili. 1 (i/2eB8~,x0 (x,y))) 
o .;r;; 

e~,xo (x, y) 
(D.lf) 

In these expressions I have used the definitions (5.2.41) and (5.2.49) of the 
twodimensional spinors <I>~(r) and X~(r) and the definitions (5.2.54) and 
(5.2.58) of the energies si0) and &ko). 
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In this Appendix I want to show that the set of spinors U~d n a(E; r) and 
' g, 

V~d n a(E; r) with E ~ O is complete. Since it is equivalent, but math-, g, 

ematically easier, I will show that the set of spinors U~d n a (E; r) with 
' g, 

-oo <E< oo is complete. In practice I have to show that 

100 00 l l 
-oo dE L L [U~d,ng,a(E; r)] a [u~:,ng,a(E; r')] b = 64 8a,b8(r- r') 

nd,ng=O a=- l 
(E. l) 

where a, b = l, ... , 4 are two spinor indices and where the definition (5.3.8) 
of the scalar product between two spinors has been taken into account. By 
using the generai expression (5.3.27) of the spinors U~d,ng,a(E; r) and the fact 
that the projectors P± are two real and symmetric matrices [see Eq. (5.3.17) 
an d remind t ha t I work in the Dirac representation of the r matrices], I can 
write the previous equation as 

(E.2) 

where v= 2Era and where the summation on the spinor indices is under-
stood. Now, by using the integrai representation [89] 

l roo 
K;x.(ç) = cos(À7r/2) lo dscos(çsinhs)cosh(Às) if IRe(À)I <l and ç >O 

(E.3) 

of the modified Bessel functions, it can easily be shown that 

(E.4) 
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In the same way it can be seen that the integrais 

j oo 8knd cosh(1rv) ) ( , 
-oo dv 7r2 Kl/2±iv( 4kndZ Klj2±iv 4kndZ) (E.5) 

vanish by using the integrai representation (E.3) for one of the Bessei func-
tions and the following 

l roo 
K>.(ç) = sin(-\1r/2) lo dssin(çsinhs)sinh(-\s) if IRe(-\)1 <l and ç >O 

(E.6) 

for the other. With these resuits Eq. (E.2) is true if 

E [P-lac [2~d,n9 ,a(x, y)Jc [2~d,n9 ,a(x', y')]d [P-]db 

+ [P+lac [2~d,n9 ,a(x,y)Jc[S~d,n9,a(x',y')]d [P+]db (E.7) 

= ~8a,b8(x- x')8(y- y'). 

Now, by using the expression (5.3.24) of the spinors S~d,ng,a(x, y) it can be 
seen that the matrix M(x,y,x',y') = l":nd,ng,aS~d,ng,a(x,y)S~d,n9 ,a(x',y') 
has the generai structure 

M(x, y, x', y') 

with 

(

E(x, y, x', y') 
_ D( x, y, x', y') 
- B(x, y, x', y') 

o 

A( x, y, x', y') 
E( x, y, x', y') 

o 
-C (x, y, x', y') 

- B(x, y, x', y') 
o 

E( x, y, x', y') 
D( x, y, x', y') 

=- E [2~d,n9,a(x,y)]4[2~d,n9,a(x',y')]2, 
nd,n9 ,a 

C(x, y~ x', y')) 
A( x, y, x', y') 
E( x, y, x', y') 

(E.8) 

(E.9a) 

(E.9b) 

(E.9c) 
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D(x, y, x', y') = L [s~d,ng,a( x, y) J 2 [S~d,ng,a (x', y')] 1 
nd,ng,a 

(E.9d) 

E(x x' ') - '"""' [o' (x )] [o'* (x' ')] 'y, 'Y - L.....t '-'nd,ng,a 'Y a '-'nd,ng,a 'Y a a= l, ... ,4. 
nd,ng,a 

(E.9e) 

If one performs the products among the matrices P± and M(x, y, x', y') in 
Eq. (E.7), it can be shown that 

[p-] ac [M (X' Y' x'' y') J cd [p-] db 
+ [P+]ac [M(x,y,x',y')Jcd [P+]db = 6a,bEa(x,y,x',y'). 

(E. lO) 

In this way, it is evident that the exact expressions of the four functions 
A( x, y, x', y'), ... , D( x, y, x', y') are not needed. Finally, by using the com-
pleteness of the set of spinors S~d n a (x, y) o ne sees t ha t 

' g, 

Ea(x,y,x',y') = ~6(x- x')6(y- y') a= 1, ... ,4 (E. l l) 

and then that Eq. (E. 7) is, actually, an identity. 
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In this Appendix I will impose that the spinor (5.3.36) is continuous at z = b 
and that its norm is unit. As a result, I will discretize the energies E and 
determine the two factors N}<) and N}>) with J = {n,nd,n9,a-} appearing 
in Eq. (5.3.36). The continuity condition is satisfied if 

NAjÌdll/2+2iEn,ndrc(4kndb) = NA::JdK1/2+2iEn,ndrc(4kndb) (F.l) 

where I pointed out that NAjÌd and NA~Jd can not depend on n9 and CY 

and that the energies depend on a new integer quantum number n. Since 
kndb << l, I can use the approximated expressions of the modified Bessel 
functions near the origin [89] 

(F.2a) 

(F.2b) 

to write Eq. (F.l) in the form 

N(>) ( 1 ) ( 1 ) (2k b)-1-4iErc 
N1~: 2 + 2iEn,ndrc r 2 2 + 2iEn,ndrc nd 2 =l (F.3) 

where the property r(z+ l) = zr(z) has been used. By equating the modulus 
and the phase of the left and right hand sides of Eq. (F.3), I obtain the two 
real conditions 

(F.4a) 

where n= o, ±l, ... and where the following property of the r function has 
been used [89]: 

7r with ç E ~- (F.5) 
cosh(1rç) 
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The condition (F.4b) determines the allowed discrete energies while, in or-
der to determine Nà;;L, I ha ve to require that the following normalization 
condition holds [see the expression (5.3.8) of the scalar product]: 

(F.6) 

By exploiting the orthonormalization condition (5.3.25) on the transverse 
spinors B'nd n a (x, y), i t can be seen t ha t the previous condition is equivalent 

' g, 
to require that 

64 kndrc cosh(2En,ndrc) 
41f2 [ 

( <) 2 rb l 12 (Nn,nJ Jo dz Il/2+2iEn,ndr0 (4kndz) 

+(N~;;{J 2 [xo dz IK1/2+2iEn,ndra(4knAn =l. 

(F.7) 

By using the approximated expressions (F.2a) calculated in 4kndz, the first 
integrai gives 

(F.8) 

The second integrai can be evaiuated by using the following identity 

loo dz IK1/2+2iEn,ndra(4k,dz) 12 

= !~ [1 00 

dz(4kn.z)' IK1/2+2iEn,ndra(4kndz)l
2 

(F.9) 

- fob dz(4kndz)' IKt/2+2iE,.,ndra(4kndz)n · 

The first integrai o n the right han d si de of this eq uation is a particular case 
of the generai formula [107] 

r)() -p 2-2-Pa-J.t+p-lbf..t (l- p+ À +li) 
Jo dss K>.(as)Kf..t(bs) = r(l _p) r 2 

x r C- p~>.+") r C- p;>.-") r C- P~>.-") 

x F ( l - P + À + li l - P - À + li. l - . l - b2) 
2 ' 2 ' p, a2 

(F.lO) 

where a, b, p, À an d li are compiex numbers such t ha t Re( a + b) > O an d 
Re(p) < 1-IRe(,\)1-IRe(~i)l and where F(r,s;u; z) is the hypergeometric 
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function. Instead, in the second integrai on the right hand side of Eq. 
(F.9) the approximated expression (F.2b) of the modified Bessel function 
calculated in 4kndZ can be used. Obviously, even if these integrals are both 
diverging in the limitE-+ O, their divergences must cancel each other because 
the left hand side of Eq. (F.9) is finite. In fact, 

lim [ {
00 

dz(4kndzt-JK1/2+2iE rc(4kndz)J
2 

E---+0 j O n,nd 

-fob dz(4kn"z)' IKl/2+2iEn,n"ra(4kndz)n 

= 4Ld ~~ [ r~~::/ C; E) lr C ; E + 2iEn,ndrc) 12 r (i) 
-;€ lr G + 2iEn,ndrc) 12 

(4kndbl'] = 

= 4k
1 

lr (-2
1 + 2iEn,ndra) 1

2 

lim [2.- 2_ exp (Elog (4kndb))] nd E---+0 2E 2E 

=-sL lr G + 2iEn,ndrc) 12 

log (4/;;,db) 
(F.11) 

where I used the property r(E/2) = 2r(1 + E/2)/E. Finally, by exploiting 
Eq. (F.5), then 

(F.12) 

and, by substituting Eqs. (F.4a), (F.8) and (F.12) in Eq. (F.7), I obtain 
the following expression of NA~Jd 

(F.13) 

Since, at the end of the calculations the limit b -+ O will be performed, I 
give the expression of NA;) in this limi t: 

(F.14) 

In the same limit an easy expression of the density of the energy levels 
(} (En,nJ can be obtained. In fact, this quantity is defined as 

(F.15) 
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Now, if kndb-+ O then Eq. (F.4b) gives simply 

n7r -1 ) En,nd = 2rc log (kndb (F.l6) 

and the density of the energy levels does not depend on the energy itself: 

(F.17) 

Finally, with this definition the normalization factor NA~) can be written in 
the limit kndb-+ O simply as 

(F.18) 
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