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1. Introduction

In mathematics, as well as in many applied sciences, researchers often face
the problem of describing a complicated behaviour or a sophisticated model.
A common approach is to find invariants: roughly speaking, an invariant is a
property shared by every point of the model or a function that attains the same
value at every state. Invariants appear in a wide range of areas of mathematics,
physics, and computer science. As an example, in the study of dynamical
systems, invariants can determine whether the system will reach a given state.

From an algebraic viewpoint, the most meaningful invariants are polynomial
functions. To compute the polynomials that vanish on a given model or set
means to compute the closure of such set in the Zariski topology. A common
approach in applied algebraic geometry is to take a model coming from biology,
statistics or computer science, and give it the structure of an algebraic variety,
thus allowing the use of powerful geometric techniques. On the other hand,
these classes of models provide examples of families of varieties, whose geometry
is interesting in their own right.

In this paper we are interested in the Zariski closures of subsemigroups of
Matn(C): given a semigroup X ⊆ Matn(C), its Zariski closure is the smallest
algebraic subvariety of Matn(C) containing X. When X is a closed subset of
GLn(C) in the induced topology, one calls X an algebraic group. The study of
algebraic groups has a long history and a rich literature (important references
are [15, 25]), but it is also motivated by concrete applications. For instance,
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groups generated by matrices appear naturally in dynamical systems, where
they are often called automata or affine programs (see for example [14, Sec-
tion 1]).

From a computational viewpoint, the problem becomes to find an algorithm
that, given a finite set of matrices, returns the Zariski closure of the group or
the semigroup that they generate, see for instance [7, Chapter 4]. Some of the
results in the literature address the existence of an algorithm rather than its
implementation or the geometric properties of the closure, see [9, Theorem 9]
and [14, Theorem 16].

The aim of this article is twofold. On the one hand, we present new proofs
of some known results and use geometric techniques to expand and general-
ize them. On the other hand, we hope that this paper will serve as a clear,
accessible reference for researchers working in different areas of mathematics
and computer science, as well as a friendly entrance point for those who are
interested in the subject.

It is natural to start with the simplest situation, i.e. the closure of a cyclic
group or semigroup. In this case we are able to give a detailed description
of the closure: what strikes us as remarkable is that each irreducible compo-
nent turns out to be a toric variety. Roughly speaking, a variety is toric if it
is the image of a monomial map. A toric variety not only has very pleasant
properties - to name a few, it is irreducible, rational and its ideal is generated
by binomials - but it can also be associated to a polytope that completely en-
codes its geometry. This makes toric varieties accessible from a theoretical,
combinatorial, and computational point of view. For instance, there are ef-
fective techniques to determine their degrees and their equations. For more
information on toric varieties we refer to [6]. We conclude by pointing out
that binomial ideals themselves sit in a very fertile ground between geometry,
algebra, and combinatorics [10].

Notation. Here we fix the notation we use in this paper.

1. For a subset X of Matn(C), we denote by X the Zariski closure of X in

Matn(C), regarded as Cn2

. We write irr(X) for the number of irreducible
components of X.

2. Given a matrix M ∈ Matn(C), we denote by E(M) the set of nonzero
eigenvalues of M . If E(M) ̸= ∅, then we write G(M) for the multiplica-
tive subgroup of C∗ generated by E(M).

3. For a finitely generated abelian group G, i.e. a finitely generated Z-module,
we write Gtor for the torsion submodule of G and rkG for the rank of a
free complement of Gtor in G. For a finite group G, we denote by |G| its
order.
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Theorem 1.1. Let M ∈ Matn(C) be a nonzero matrix and let ν be the largest
size of a Jordan block of M associated to 0. Write X = {Mk | k ∈ Z>0} for the
semigroup of Matn(C) generated by M . Then X can be written as a disjoint
union

X = X0 ∪̇ X1

of closed sets, where

1. X0 is a collection of points of cardinality{
ν if E(M) = ∅,

max{0, ν − 1} otherwise.

2. either X1 = E(M) = ∅ or X1 is a union of |G(M)tor| toric varieties of
dimension

dimX1 =

{
rkG(M) if Mmax{1,ν} is diagonalizable,

rkG(M) + 1 otherwise.

Observe that Theorem 1.1 applies not only to semigroups: as we will prove
in Proposition 2.4, when M is invertible the same statement is true for the
group generated by M . In this case, the toric varieties described in point (2)
are the irreducible components of X1, and their intersections with GLn(C) are
the connected components of the group ⟨M⟩ ∩GLn(C). When M is invertible
and diagonalizable, Theorem 1.1 agrees with [7, Proposition 3.9.7]. Let us also
point out that, thanks to [19, Proposition 11], Theorem 1.1 describes not only
the structure of the closure of affine programs, which are discrete dynamical
systems, but also the structure of a much larger class of dynamical systems,
called hybrid automata.

Example 1.2. Let

M =

(
10 −8
6 −4

)
∈ GL2(C)

and let X be the semigroup of GL2(C) generated by M . If we set

D =

(
2 0
0 4

)
and P =

(
1 4
1 3

)
,

then M = PDP−1. It follows that M is diagonalizable, E(M) = {2, 4}, and
G(M) = ⟨2, 4⟩ = ⟨2⟩ ∼= Z. Theorem 1.1 yields that X is an irreducible toric
curve in C4. This example was presented in [14, Section 2] in the setting of
dynamical systems. Here we determine explicit equations describing the closure
of X. Let Y be the semigroup generated by D. Denoting the coordinates
of C4 by (

x w
z y

)
,
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we see that the three polynomials f = z, g = w, and h = x2 − y generate
the ideal of Y . Let ϕ : C4 → C4 be the linear automorphism defined by
A 7→ PAP−1, i.e.(

x w
z y

)
7−→

(
−3x+ 4y + 4z − 3w −12x+ 12y + 16z − 9w

x− y − z + w 4x− 3y − 4z + 3w

)
.

Then ϕ(X) = Y , hence f ◦ ϕ, g ◦ ϕ, and h ◦ ϕ generate the ideal of X. With
this choice of coordinates, the map ϕ is represented by the matrix

−3 4 4 −3
4 −3 4 3
1 −1 −1 1

−12 12 16 −9

 ,

therefore X is described by the equations
x+ w = y + z,

12x+ 9w = 12y + 16z,

(−3x+ 4y + 4z − 3w)2 = 4x− 3y − 4z + 3w.

These provide the tightest polynomial conditions that a point has to satisfy in
order to belong to X.

2. Preliminaries

In the present paper we are concerned with Zariski closures of subsets of
Matn(C). However, when the subsets in play consist of invertible matrices,
the closures are classically taken in GLn(C). Here we show that, when deal-
ing with commutative subgroups, some important geometric properties do not
depend on this choice.

Lemma 2.1. Let X be a subgroup of GLn(C) and let g ∈ GLn(C). Then
gXg−1 = gXg−1 and X is isomorphic to gXg−1 as algebraic subvarieties of
Matn(C).

Proof. Let ϕ : Matn(C) → Matn(C) denote conjugation under g, which is a
homeomorphism restricting to an automorphism of the algebraic group GLn(C).
As a consequence, X and ϕ(X) = gXg−1 are isomorphic varieties. The mor-
phism ϕ being a homeomorphism, we get ϕ(X) = ϕ(X).

Lemma 2.2. Let X be a commutative subgroup of GLn(C). Then the following
hold:
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1. There exists g ∈ GLn(C) such that gXg−1 consists of upper triangular
matrices.

2. The Zariski closure X ∩GLn(C) of X in GLn(C) is dense in X.

Proof. For (1), see [25, Lemma 2.4.2]. To see (2), observe that X ⊆ X ∩
GLn(C) ⊆ X, so taking the closures yields the claim.

Remark 2.3. We will assume in the rest of the paper that any commutative
subgroup of GLn(C) is already given in upper triangular form. Moreover,
thanks to Lemma 2.2(2.), dimension and number of irreducible components of
X are the same, regardless of whether we take them in Matn(C) or GLn(C).

Besides the choice of the ambient space for the closure, i.e. Matn(C) or
GLn(C), there are other variations of the problem in the literature. As we
pointed out in the introduction, given finitely many matrices, it is interesting
to consider both the group and the semigroup they generate. The following
result, already proven in [9, Lemma 2] for orthogonal matrices, shows that, for
our purposes, it is equivalent to deal with groups or semigroups.

Proposition 2.4. Let Y ⊆ GLn(C) be a subsemigroup and let X denote the
smallest subgroup of GLn(C) containing Y , i.e.

X =
⋂

{H ≤ GLn(C) | Y ⊆ H} .

Then the Zariski closures X and Y are the same.

Proof. Let UX = X ∩ GLn(C) and UY = Y ∩ GLn(C) denote respectively
the closures of X and Y in GLn(C). We claim that UY is a subgroup of
UX . Indeed, if this were not the case, there would exist an element g ∈ UY

yielding an infinite chain UY ⊋ gUY ⊋ g2UY ⊋ . . . and thus contradicting
Noetherianity of the Zariski closure. Since UX is the smallest closed subgroup
of GLn(C) containing X, the equality UX = UY holds. We now observe that
X ⊆ UX ⊆ X and so X = UX . An analogous statement holds for UY and so
we conclude that X = Y .

3. Zariski closure of a cyclic group

In the present section, we will prove Theorem 1.1 for invertible matrices. We
conveniently recall the statement in this case.

Theorem 3.1. Let M ∈ GLn(C) and let X be the subgroup of GLn(C) gen-
erated by M . Then irr(X) = |G(M)tor| and the irreducible components are
pairwise isomorphic toric varieties of dimension

dimX =

{
rkG(M) if M is diagonalizable,

rkG(M) + 1 otherwise.
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As we will be dealing with cyclic subgroups of the form X = ⟨M⟩ with
M ∈ GLn(C), throughout the present section we will make implicit use of
Lemma 2.1 by assuming that the matrix M is given in Jordan normal form.

We remark that the content of Theorem 3.1 is not essentially new. Indeed,
in the case of invertible matrices, one ends up working with algebraic groups:
a number of algorithms for the computation of their defining polynomials are
presented in [7] and in many cases rely on Lie algebra techniques. Given the
important role of toric varieties in modern applied mathematics, the results we
present are in the language of algebraic geometry.

3.1. The diagonalizable case

For the convenience of the reader, we collect in the following remark the facts
about toric varieties that we will be needing in this section.

Remark 3.2. Given a finite set A = {α1, . . . , αn} ⊂ Zr, define the map ΦA :
(C∗)r → (C∗)n by

x = (x1, . . . , xr) 7→ (xαi = xαi1
1 · . . . · xαir

r | i ∈ {1, . . . , n}).

The closure of the image of ΦA is the toric variety denoted by YA. The
dimension of YA is the rank of the free group generated by A. In other
words, if A ∈ Matr×n(Z) is the matrix whose columns are α1 . . . , αn, then
dimYA = rkA. Moreover, the ideal of YA is generated by the binomials xβ−xγ

whenever β, γ ∈ (Z≥0)
r satisfy β − γ ∈ kerZ(A). For these facts and more, see

e.g. [6, Section 1.1].

Example 3.3. Let us consider A = {(3,−1), (0, 1), (1, 1)}. Then ΦA : (C∗)2 →
(C∗)3 is given by

(x1, x2) 7→ (x3
1x

−1
2 , x2, x1x2).

In the notation of Remark 3.2, we have

A =

(
3 0 1
−1 1 1

)
and so YA has dimension rk(A) = 2. Since kerZ(A) = Z(1, 4,−3), the toric
variety YA is defined by the equation xy4 = z3.

Let M = diag(a1, . . . , an) ∈ GLn(C). As in the Introduction, we define
X = {Mk | k ∈ Z} to be the group generated by M and G(M) = ⟨a1, . . . , an⟩
be the subgroup of C∗ generated by the eigenvalues of M .

Proposition 3.4. If G(M) is torsionfree, then X is a toric variety of dimen-
sion dimX = rkG(M).
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Proof. Set r = rkG(M). By hypothesis G(M) is a free Z-module of rank r.
Let c1, . . . , cr be a Z-basis of G(M). For every i ∈ {1, . . . , n} and j ∈ {1, . . . , r}
there exists αij ∈ Z such that

a1 = cα11
1 · . . . · cα1r

r , . . . , an = cαn1
1 · . . . · cαnr

r .

We use this data to define the matrix

A =

α11 . . . αn1

...
...

α1r . . . αnr

 ∈ Matr×n(Z).

Let A ⊂ Zr be the set of lattice points corresponding to the columns of A and
let YA be the associated toric variety. By Remark 3.2, a set of generators of
its ideal IYA is given by binomials derived from a generating set of kerZ(A).
Observe that every generator of kerZ(A) gives a binomial vanishing on X, so
IYA ⊂ IX . On the other hand, by [17, Proposition 5], the ideal IX is generated
by binomials with coefficients in {0,±1}. For this reason, every generator of
IX gives a relation in G(M) and therefore an element of kerZ(A). This shows
that IX = IYA , so X = YA is a toric variety. Since dimX = rkA, in order to
conclude it suffices to show that rkA = r.

Up to reordering, we assume that the first t columns of A are a basis for the
Z-module spanned by all of its columns. Since A has r rows, we clearly have
that t ≤ r. On the other hand, for every j > t, the j-th column (αj1, . . . , αjr)

⊤

is a Z-linear combination of (α11, . . . , α1r)
⊤, . . . , (αt1, . . . , αtr)

⊤. Hence there
exist λ1j , . . . , λtj ∈ Z such that

αj1 = λ1jα11 + . . .+ λtjαt1, . . . , αjr = λ1jα1r + . . .+ λtjαtr.

This means that

aj = c
αj1

1 · . . . · cαjr
r = c

λ1jα11+...+λtjαt1

1 · . . . · cλ1jα1r+...+λtjαtr
r

= c
λ1jα11

1 · . . . · cλ1jα1r
r · . . . · cλtjαt1

1 · . . . · cλtjαtr
r

= a
λ1j

1 · . . . · aλtj

t .

Therefore at+1, . . . , an ∈ ⟨a1, . . . , at⟩ and so we conclude that t ≥ r.

The structure of diagonalizable algebraic groups is discussed in [7, Sec-
tion 3.9]. In particular, Proposition 3.9.7 ensures that a diagonalizable alge-
braic subgroup of GLn(C) splits as a direct product of a finite group and an
r-dimensional torus, where r is the rank of its associated lattice (in the lan-
guage of [6], the lattice associated to the toric variety). The arguments we
use in the proof of Proposition 3.4 resemble those from [9, Section 3.3] or [7,
Section 3.9] though in a slightly different language.



8 F. GALUPPI AND M. STANOJKOVSKI

In his PhD Thesis (University of Leipzig, 2020), Görlach presents a refor-
mulation of [7, Proposition 3.9.7] from the point of view of Hadamard product
of algebraic varieties.

Proposition 3.5. The variety X has |G(M)tor| irreducible components. The
components are pairwise isomorphic toric varieties of dimension rkG(M).

Proof. Set q = |G(M)tor|. For every choice of i ∈ {0, . . . , q − 1}, define the set
Yi = {Mkq+i | k ∈ Z}. Then X is the disjoint union of the Yi’s and

X = Y0 ∪ . . . ∪ Yq−1 = Y0 ∪ . . . ∪ Yq−1.

Note that Yi = {M i·(Mq)k | k ∈ Z} is the image of Y0 = {(Mq)k | k ∈ Z} under
a linear automorphism of Matn(C), namely multiplication by M i. Moreover
we have

Mq = diag(aq1, . . . , a
q
n).

By construction, the group ⟨aq1, . . . , aqn⟩ is torsionfree of rank equal to rkG(M).
Proposition 3.4 yields that Yi has dimension rkG(M) and, being toric, Yi is
irreducible.

We remark that, in the induced topology, the connected components of
X ∩GLn(C) are precisely the intersections Yi ∩GLn(C), where Yi is as in the
proof of Proposition 3.5. In particular, Y0 ∩ GLn(C) is the unique irreducible
component of X ∩ GLn(C) that contains the identity matrix. For more on
connectedness, see for example [7, Section 3.2].

With the next example, we would like to hint to how much information toric
geometry carries. We apply results from [6, Chapter 2.4] to check whether X
is normal and to compute its singular locus. Moreover, we apply [6, Theo-
rem 13.4.1] to compute the degree of X. Recall that the normalized volume of
a polytope P ⊆ Rn, denoted by volP , is n! times its Lebesgue measure.

Example 3.6. Let M = diag(1, 2, 3, 4) and let X be the group generated by
M . The eigenvalues of M generate G(M) = ⟨2, 3⟩ ∼= Z2. Following the proof
of Proposition 3.4, we have

A =

(
0 1 0 2
0 0 1 0

)
.

In this case kerZ A = ⟨(1, 0, 0, 0), (0, 2, 0,−1)⟩. Viewed as a subvariety of P3,
the toric variety X is defined by x2

1 = x0x3 and corresponds to the polytope
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which we denote by P . Such polytope is normal of dimension 2, so the projec-
tive variety X is a normal surface. However, P is not smooth, so X is singular.
More precisely, its singular locus is a point. The degree of X is volP = 2.
As shown in [6, Example 2.4.6], the variety X is the weighted projective space
P(1, 1, 2) embedded as a quadric cone in P3.

The next result shows that we can realize every toric variety as the Zariski
closure of a cyclic subgroup of GLn(C).

Proposition 3.7. Let Y ⊆ Cn be an affine toric variety and identify Cn with
the space of diagonal matrices. Then there exists a diagonal matrix M ∈
GLn(C) such that Y = ⟨M⟩ in Cn.

Proof. Let {α1, . . . , αn} ⊆ Zr be a set of lattice points defining Y as a toric
variety. Let

A =

α11 . . . αn1

...
...

α1r . . . αnr

 ∈ Matr×n(Z)

be the matrix with columns α1, . . . , αn. Let c1, . . . , cr be r distinct prime
numbers and set

a1 = cα11
1 · . . . · cα1r

r , . . . , an = cαn1
1 · . . . · cαnr

r .

By defining M = diag(a1, . . . , an) and following the proof of Proposition 3.4
backwards, we find Y = ⟨M⟩.

An immediate consequence of Proposition 3.7 is that we can cook up cyclic
matrix groups whose closure has arbitrary dimension, degree and number of
irriducible components. However, we observe that, in contrast to the case of
toric varieties, not all binomial varieties can be realized as closures of cyclic
subgroups of GLn(C).

The next example shows a way of applying Proposition 3.5 in a simple
non-cyclic setting.

Example 3.8. Define X = ⟨A,B⟩ where

A =

(
2 0
0 1

)
and B =

(
1 0
0 2

)
.

Then, for any d ∈ Z, the group X contains the cyclic subgroup

Yd = ⟨ABd⟩ =
{(

2h 0
0 2hd

)
| h ∈ Z

}
.

Thanks to Proposition 3.4, the closure of each Yd is a curve and so, X containing
infinitely many curves, the dimension of X is 2. In particular, X is a plane
in C4.
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3.2. The unipotent case

In this section we consider the case of unipotent matrices and prove Theo-
rem 3.1. Let M ∈ GLn(C) and let X be the subgroup of GLn(C) generated
by M . Without loss of generality, we assume that M is in Jordan normal form.
Let Ms and Mu be respectively the semisimple and the unipotent part of M ,
which satisfy MsMu = MuMs. In particular, M = MsMu is upper triangular,
Ms is diagonal and Mu is upper unitriangular. We remark that the eigenvalues
of M are the same as the eigenvalues of Ms. We define additionally the sets
Xs = {Mk

s | k ∈ Z} and Xu = {Mk
u | k ∈ Z}.

The proof of the following result is an easy computation.

Lemma 3.9. Let λ ∈ C∗, k ∈ Z≥0, and let J(m,λ) = (bij) ∈ GLm(C) be defined
by

bij =


1 if i = j,

λ if j = i+ 1,

0 otherwise.

Write J(m,λ)k = (aij). Then

aij =

{
0 if i > j,(

k
j−i

)
λj−i otherwise

(1)

and, for each r ∈ {1, . . . ,m− 1}, the following holds:

r!a1,r+1 =

r−1∏
i=0

(a12 − iλ). (2)

Lemma 3.10. Assume that Mu ̸= 1 and let m be the biggest size of a Jordan
block of M . Then Xu is a degree m− 1 rational normal curve.

Proof. Let d denote the number of Jordan blocks of M , arbitrarily ordered.
For each l ∈ {1, . . . , d}, let λl and m(l) denote respectively the eigenvalue and
size corresponding to the l-th Jordan block of M . Set Jl = J(m(l), λ−1

l ) so
that, for every k ∈ Z, we have Mk

u = diag(Jk
1 , . . . , J

k
d ). Fix now k ∈ Z and

write al,ij for the (i, j)-th entry of Jk
l . By Lemma 3.9(1), all entries of Jk

l are
linear functions of entries in the first row of Jk

l and thus, by Lemma 3.9(2),
polynomials in al,12. Furthermore, by Lemma 3.9(1), the blocks Jk

l and Jk
s are

compared via

al,12 = kλ−1
l =

λs

λl
· kλ−1

s =
λs

λl
· as,12.

Fix J ∈ {J1, . . . , Jd} to be an element of maximal size m. Then Xu is contained
in a linear space L of dimension m, with coordinates x1, . . . , xm corresponding
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to the entries of the first row of J . More precisely, Xu is contained in the image
of the map f̃ : C → L defined by

t 7→

1, tλ−1,
t(t− 1)

2
λ−2, . . . ,

1

(m− 1)!

m−2∏
j=0

(t− j)λ−m+1

 .

Since the image of f̃ is an irreducible curve and Xu is infinite, f̃(C) = Xu.
After applying the first linear change of coordinates

(x1, x2, x3, . . . , xm) 7→ (x1, λx2, 2λ
2x3, . . . , (m− 1)!λm−1xm),

Xu is parametrized by the map f : C → L defined by

t 7→

1, t, t(t− 1), . . . ,

m−2∏
j=0

(t− j)

 .

To show that Xu is a degree m − 1 rational normal curve, we recursively
construct linear polynomials l1(x1), l2(x1, x2), . . . , lm(x1, . . . , xm) such that, for
each r ∈ {1, . . . ,m}, the map ϕr : Cm → Cm defined by

ϕr(x1, . . . , xm) = (l1(x1), . . . , lr(x1, . . . , xr), xr+1, . . . , xm)

ensures that the first r entries of f ◦ ϕr(x1, . . . , xm) equal (1, t, t2, . . . , tr−1).
Set l1(x1) = x1 and l2(x1, x2) = x2. Assume now that l1 . . . , lr are given
and let us define lr+1. By the induction hypothesis, the change of coordinates
(x1, . . . , xm) 7→ (l1(x1), . . . , lr(x1, . . . , xr), xr+1, . . . , xm) turns f into

t 7→

1, t, t2, . . . , tr−1,

r−1∏
j=0

(t− j), . . . ,

m−2∏
j=0

(t− j)

 .

Now the (r + 1)-th entry is of the form tr + cr−1t
r−1 + . . .+ c1t+ c0 for some

c0, . . . , cr−1 ∈ C. We conclude by defining

lr+1(x1, . . . , xr+1) = xr+1 − cr−1xr − . . .− c1x2 − c0x1,

which is linear in x1, . . . , xr+1 and satisfies by construction the required induc-
tive property.

Lemma 3.10 is a different instance of [7, Proposition 4.3.10] for algebraic
subgroups of GLn(C), though our proof does not rely on Lie theory. Moreover,
as a consequence of [7, Corollary 4.3.11], the Zariski closure of any unipotent
subgroup is (connected and thus) irreducible in Matn(C). For more about
unipotent algebraic groups in this context, see for example [7, Section 4.3.2].
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Example 3.11. We use the notation from Lemma 3.9. Define

M =


1/5 1 0 0
0 1/5 1 0
0 0 1/5 1
0 0 0 1/5

 ,

which is already in Jordan normal form. In this case

Ms = diag(1/5, 1/5, 1/5, 1/5) and Mu = J(4, 5).

By Lemma 3.9(1), for each k ∈ Z one has

Mk
u = J(4, 5)k =


1 5k 52 · k(k−1)

2 53 · k(k−1)(k−2)
6

0 1 5k 52 · k(k−1)
2

0 0 1 5k
0 0 0 1

 .

Denoting by xij the 16 independent variables corresponding to the entries of
a matrix in Mat4(C), we see that Xu is contained in the 4-dimensional linear
space L defined by the equations

xij = 0 for i < j, x13 = x24,

xii = 1 for i ∈ {1, . . . , 4} , x12 = x23 = x34.

We identify L with the affine space C4, with coordinates x1, x2, x3, x4 corre-
sponding to the entries x11, x12, x13, x14 of the first row of Mk

u . Then Xu is the
image of the map C → L defined by

t 7→
(
1, 5t,

25t(t− 1)

2
,
125t(t− 1)(t− 2)

6

)
.

After the changes of coordinates

(x1, x2, x3, x4) 7→
(
x1,

x2

5
,
2x3

25
+

x2

5
,
6x4

125
+

6x3

25
+

x2

5

)
,

we see that Xu is the image of t 7→ (1, t, t2, t3), so Xu is the twisted cubic curve
in the hyperplane defined by x1 = 1 in L.

Proposition 3.12. The following equalities hold:

dimX = dimXs + dimXu and irr(X) = irr(Xs).

Proof. By Remark 2.3, the dimension and the number of irreducible compo-
nents of X remain invariant when intersecting X with GLn(C). For this proof
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only, we will write X to mean the Zariski closure of X in GLn(C). This applies
also to Xs and Xu. Recall that X, Xs, and Xu are in this case subgroups of
GLn(C), see for example [25, Lemma 2.2.4].

We start by observing that X is abelian. Indeed, the commutator map X×
X → GLn(C) is continuous and trivial on the dense subset X ×X, therefore it
is itself trivial. Now, the group X being abelian, [15, Theorem 15.5] yields that
X ∼= Xs ×Xu. In particular, we get dimX = dimXs + dimXu. Lemma 3.10
ensures that Xu is irreducible and thus we also have that irr(X) = irr(Xs).

We prove here Theorem 3.1. From Proposition 3.12 we know that

dimX = dimXs + dimXu

and irr(X) = irr(Xs). By Proposition 3.5, we have irr(X) = |G(M)tor| and,
combined with Lemma 3.10, that

dimX = rkG(M) + dimXu =

{
rkG(M) if Mu = 1,

rkG(M) + 1 otherwise.

In conclusion, as a consequence of Proposition 3.5 and the fact that X∩GLn(C)
is dense in X, the irreducible components of X are toric varieties.

Corollary 3.13. Let q ∈ Z. If G(M) is torsionfree, then X = ⟨Mq⟩.

Proof. Let a1, . . . , an be the eigenvalues of M and assume that G(M) is tor-
sionfree. Then the eigenvalues of Mq are aq1, . . . , a

q
n and ⟨aq1, . . . , aqn⟩ is a free

Z-submodule ofG(M) of the same rank asG(M). By Theorem 3.1, the varieties
⟨M⟩ and ⟨Mq⟩ are both irreducible of the same dimension. Since ⟨M⟩ ⊇ ⟨Mq⟩,
they are the same.

4. Zariski closure of a cyclic semigroup

The purpose of this section is to prove Theorem 1.1. We start with an example
to illustrate the argument we will use in the proof.

Example 4.1. Let M ∈ Matn(C) be defined by

M =

0 1 0
0 0 0
0 0 2


and let X = {Mk | k ∈ Z>0}. Then M2 = diag(0, 0, 4) and thus we have

X = {M} ∪̇ {diag(0, 0, 2k) | k ≥ 2}.
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We observe that the set {diag(0, 0, 2k) | k ≥ 2} consists of infinitely many
collinear points. In particular, we get that

X = {M} ∪̇ {diag(0, 0, z) | z ∈ C}

and so X is the disjoint union of a point and a line.

Until the end of this section, we will work under the hypotheses of Theo-
rem 1.1. We proceed by considering disjoint cases.

Assume first that E(M) = ∅. In this case the only eigenvalue of M is 0,
which implies that M is nilpotent. Since M ̸= 0 by hypothesis, Mν is the
smallest power of M that is equal to 0 and so X consists of ν points. To
conclude, define X0 = X and X1 = ∅.

Assume now that M is invertible, so ν = 0 and E(M) ̸= ∅. Define X0 = ∅
and X1 = X. We are now done thanks to Theorem 3.1.

To conclude, assume that M is not invertible and E(M) ̸= ∅. In this case,
ν ≥ 1 and there exist positive integers m and p and matrices N ∈ Matm(C)
strictly upper triangular and M1 ∈ GLp(C) upper triangular such that M has
the following block shape:

M =

(
N 0
0 M1

)
.

Fix such matrices N and M1. Then N is nilpotent and ν is the smallest
exponent annihilating N . It follows that

X = {Mk | k ∈ {1, . . . , ν − 1}} ∪̇
{(

0 0
0 Mk

1

)
| k ≥ ν

}
.

Write X0 = {Mk | k ∈ {1, . . . , ν − 1}} and

Y1 =

{(
0 0
0 Mk

1

)
| k ≥ ν

}
.

Then X0 is a closed variety consisting of ν−1 points. Set X1 = Y1. We observe
that the semigroup generated by M1 in GLp(C) is the image of Y1 under a
linear automorphism of Matn(C). It follows from Proposition 2.4 that X1 is
isomorphic to the Zariski closure of ⟨M1⟩ in Matp(C). Thanks to Theorem 3.1,
the proof of Theorem 1.1 is now complete.

5. Computation of closures of matrix groups

We conclude the paper with a sinthetic discussion of the available algorithms
for the computation of Zariski closures of matrix groups.
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We start by remarking that, while C is the most convenient field choice for
algebraic geometry, this is certainly not the case for computer algebra softwares.
For computational purposes, it is indeed necessary to work over a field that is
suitable for symbolic computations, for instance the field of rational numbers.

Ideally, one wishes for an algorithm that takes as input a list of matrices
M1, . . . ,Mt ∈ Matn(Q) and returns as output the ideal of the Zariski closure
of the group or semigroup generated by M1, . . . ,Mt. Such an algorithm would
provide the strongest polynomial invariants of ⟨M1, . . . ,Mt⟩.

When all the matrices are invertible, it makes sense to consider the group
they generate: algorithms computing the closure of such group in GLn(C)
are presented in [9, Section 3] and in [7, Chapter 4.6]. The computation of the
closure in Matn(C) or Matn(R) of the generated semigroup is addressed in [14].
For a number of related problems, see for example [1, 16, 17, 22, 26].

Some of these results concern decidability, i.e. the existence of an algo-
rithmic solution. Among the implementations we mention [17, Algorithm 3],
implemented in Mathematica 5 [28], and various algorithms presented in [7]
and implemented in GAP4 [11], Magma [4], and Singular [8].

To the best of our knowledge, no complexity analysis has been run in
[9, 14, 17]. In the preface to [7], the author writes: “We do not consider
the complexity of algorithms as they very often are bad. Indeed, quite a few
algorithms use Gröbner bases, and the complexity of the algorithms to compute
the latter is known to be doubly exponential”. It is however worth mentioning
that many of these algorithms rely on a polynomial-time algorithm of Ge [12,
Theorem 1.1], dealing with units in number fields. The last result is generalized
in [18, Theorem 1.11] to arbitrary Q-algebras.
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