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ABSTRACT

We focus on credit scoring methods to separate defaulter small and medium enterprises from
non-defaulter ones. In this framework, a typical problem occurs because the proportion of
defaulter �rms is very close to zero, leading to a class imbalance problem. Moreover, a
form of bias may a�ect the classi�cation. In fact, classi�cation models are usually based on
balance sheet items of large corporations which are not randomly selected. We investigate
how di�erent criteria of sample selection may a�ect the accuracy of the classi�cation and
how this problem is strongly related to the imbalance of the classes.
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1. Introduction

The second Basel capital accord (Basel II, 2004) and its recent and updated version
Basel III (2010) de�ne recommendations and directives with the purpose of creating a set of
international standard rules on banking laws. The accords delineate the consistency of capital
regulations, aim at guaranteeing banking credit policies more risk sensitive, and suggest the
required prerequisites for an internal rating based approach. Since their introduction, the
internal banking processes of modeling and measuring the credit risk have been strongly
a�ected, e.g. in terms of lower capital requirements in comparison with external rating
information (Altman and Sabato, 2005).

Credit risks models and methods are meant to �nd rules for measuring the risk associated
with credit applications or separating defaulter credit applicants from non-defaulter ones.
These methods follow both non statistical approaches based on linear programming, genetic
algorithms or neural network and statistical approaches as classi�cation algorithms or en-
semble techniques (see, for example, Thomas et al. (2002)). Usually classi�cation techniques
aim at �nding what would have been the best rule to apply on a sample of previous appli-
cants (the so called training set). The advantage of this procedures is that the subsequent
behavior of the training applicants is known.

In this work we focus on credit scoring methods to separate defaulter small and medium
enterprises (SMEs) from non-defaulter ones. In this framework, a typical problem occurs
because the proportion of defaulter �rms is very close to zero, leading to an imbalance class
situation. A form of bias may a�ect the classi�cation. In fact, the classi�cation models are
usually based on balance sheet items of large corporations which are not randomly selected
(see, for example, Dietsch and Petey (2004)). This problem has been largely ignored by the
literature about credit risk analysis. We investigate how di�erent criteria of sample selection
may a�ect the accuracy of the classi�cation and how this problem is strongly related to the
class imbalance problem.

Section 2 describes brie�y the e�ects of the use of unbalanced data and the existing
remedies. In Section 3, the problem and the severity of sample selection bias is investigated
through a simulation study. Results from an application to real data show that the class
imbalance hinders the sample selection bias. Section 4 introduces a method for generating
new data and then facing the issue of sample selection without the intrusion of the imbalance
e�ect. Some �nal considerations and recommendations conclude the paper.

2. The class imbalance problem

Most of the classi�cation methods base their theoretical e�ciency on the assumption that
the distribution of the classes is well balanced over the training set. However, there exist
many contexts where this assumption is not met because the large majority of instances
are concentrated only in some classes while one class (usually the most interesting) is rare.
Examples include identifying fraudulent credit card transactions (Chan and Stolfo, 2001),
defaulter credit applicants (Stanghellini, 2006.), cancerous cells from radiographies (Woods
et al., 1993), learning word pronunciations (Van den Bosch et al., 1997.), detecting oil spills
from satellite images (Kubat, 1998). In certain domains (like those just mentioned) the class
imbalance is intrinsic to the problem. However, class imbalance sometimes occurs when the
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data collection process is limited (e.g., due to economic or privacy reasons), thus creating an
arti�cial imbalance.

In the recent years, the issue of class imbalance has been widely investigated by the
statistical and machine learning communities (see for a review, Japkowicz and Stephen (2002)
or Weiss (2004)). Two main sorts of consequences arise in learning with rare classes: the
standard measures of accuracy of the model are not appropriate and, even worse, classi�ers
tend to learn from the large classes and ignore the rare events.

a. Measuring the accuracy of the models

In the context of rare events, the use of common evaluation measures such as overall
error (proportion of misclassi�ed units), can lead to misleading conclusions. For example, in
a problem where the rare class is represented in only 1% of the data, the naive strategy of
allocating each data to the prevalent class would achieve a good level of accuracy, presenting
an overall error equal to 1%. For this reason, alternative measures of accuracy should be used,
which consider separately the accuracy in predicting the prevalent class and the accuracy
in predicting the rare class. In a binary decision problem, the classi�ed data are labeled as
either positive or negative examples. The classi�er outcome can be represented in the so-
called confusion matrix, a contingency table representing the occurrence of four categories:
(i) true positives (TP), examples correctly labeled as positives, (ii) false positives (FP),
negative examples incorrectly labeled as positive, (iii) true negatives (TN), negative examples
correctly labeled as negative., (iv) false negatives (FN), positive examples incorrectly labeled
as negative.

In class imbalance problems, the evaluation measures take into account the di�erent
propensity toward false positive and false negative (where the positive examples usually de-
note the rare class). Hence, the most common measures are precision (fraction of examples
classi�ed as positive that are truly positive) and recall (fraction of positive examples that
are correctly labeled). A more general measure to evaluate the performance of a classi�er in
presence of rare events is the ROC curve, which plots the True Positive Rate (1- False Neg-
ative rate) vs the False Positive rate, when the classi�cation threshold varies. The classi�er
performs as better as steeper is the ROC curve that is, as larger is the area underlying the
curve.

b. Learning with rare events

Except the uninteresting situations where the classes are perfectly separated, when data
with di�erent labels overlap, most of standard classi�ers tend to be overwhelmed by the
prevalent classes and ignore the rare one. In fact, most of classi�cation methods generally
are conceived to estimate from the sample the simplest model that best �ts the data. The
simplest model, however, pays less attention to rare cases in an imbalanced data set. There-
fore, classi�cation rules that predict the rare class tend to be fewer and weaker than those
that predict the prevalent class. Consequently, test examples belonging to the rare class are
misclassi�ed more often than those belonging to the prevalent class.

Several strategies for dealing with the class imbalance problem have been proposed in
the literature. Almost all of them are designed for the binary scenario, where one class is
represented by a large number of data while another is represented by only a few, tipically
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with higher identi�cation importance. Reported solutions are developed at both the data
and algorithmic levels.

At the data level, the objective is to re-balance the class distribution by re-sampling
the data space. Solutions at the data-level include random oversampling the rare class with
replacement, random undersampling the prevalent class, directed oversampling the rare class
(where no new examples are created, but the choice of samples to replace is informed rather
than random), directed undersampling (where, again, the choice of examples to eliminate is
informed), oversampling with informed generation of new samples, and combinations of the
above techniques (Japkowicz, 2000).

At the algorithm level, solutions try to adapt existing classi�er learning algorithms to
strengthen learning with regards to the rare class. Cost-sensitive learning methods incor-
porate both the data and algorithmic level approaches by assuming higher misclassi�cation
costs of the rare examples and minimizing the high cost errors.

In this paper a recent strategy to deal with the class imbalance problem is applied to
understand how the sample selection bias a�ects the classi�cation. Namely, the imbalance
problem is reduced by the arti�cial generation of new data. This new technique will be
illustrated in section 4.

3. E�ects of sample selection

Many �nancial companies which provide economical analysis and risk ratings for en-
terprises base their results on models which are estimated by using information about not
randomly selected business, such as for example large corporations. Our natural conjecture
is that the use of non random samples may a�ect the accuracy of the results.

a. Simulated data application

A simulation study has been conducted to show how non random criteria of sample
selection may lead to misleading results.

A set of covariates have been generated as follows: x1 has an Uniform distribution; x2 has
a Gaussian distribution with moments depending on the values of x1, x3 is an Exponential
random variable which has been used to select the samples. The dependent variable y takes
values in {0, 1} and is related to the covariates through a non linear probit model with
parameters chosen to control the dependence of y on the covariates.

We have splitted the generated population into three subpopulations according to the
value of x3: S (small values of x3), M (medium values of x3), L (large values of x3) and
we have supposed to be interested in classifying data with small values of x3 (this choice
corresponds to our focus on predicting the default event of SME, using data coming from
SMEs or larger business).

The procedure to generate y has been adjusted in order to take account of di�erent
proportions of events (set to 50%, 10%, 5 %�). We have randomly generated a training set
from S, M, L and from the whole population (T) and we have estimated a logit model on
the selected data. The accuracy of the model has been evaluated on a test set drawn from
S. This procedure has been iterated several times in order to guarantee the stability of the
results.
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Fig. 1. Comparison between models built on simulated data. On each panel di�erent
curves correspond to the sample selection from di�erent subpopulations. The test set has
been drawn from S. The three panels refer to di�erent proportions of events in the population
(50%, 10%, 5%o respectively).

The left panel of Figure 1 shows the e�ect of selecting samples from subpopulations dif-
ferent from the target S. The loss of accuracy due to the sample selection e�ect is remarkable.
However, this e�ect get smaller as the imbalance level increases and it is completely hidden
when the class distribution is highly skew.

For this reason we have adopted one of the standard procedures recommended to cope
with rare events, consisting in oversampling the rare class in such a way to obtain balanced
samples. Results reported in Figure 2 show an increased accuracy of the models and the
sample selection e�ect arises even in the most unbalanced situations.

This procedure has been implemented also by using decision trees and linear discriminant
analysis as a classi�cation technique with similar results.

b. Real data application

The population of enterprises may be partitioned into the subsets of micro enterprises
(MIE), small and medium enterprises (SME) and big enterprises (BE). This partition is made
according to some criteria which depends on the headcount, the turnover and the balance
sheet total of the company.

Our goal is to �nd an accurate rule to classify SMEs according to their risk of default. In
order to use the balance sheet information, we have to restrict the attention on corporations,
which are the only companies required by law to present the balance sheet to the Business
Register.

Data at hand consist of vital statistics, balance sheet records and �nancial ratio of all
the commercial companies enrolled to the Business Register and located in a province of
the North Eastern part of Italy. The occurrence of a bankruptcy condition is considered
as the default event. The whole data set includes 11199 enterprises with 76 defaulter �rms
only. Strati�cation of the data into the categories of and MIEs, SMEs and BEs results in
increasing the gravity of the class imbalance, because fewer positive examples are available
in each class of �rms.
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Fig. 2. See Figure 1. The training sets have been selected according to a disproportioned
strati�ed sample in order to balance the classes.

We have considered the following sets of companies: the micro enterprises, the small and
medium enterprises and the whole set of enterprises (BR). Moreover, we have considered a
sample of �rms (A) which exceed a certain threshold of the turnover. This threshold has
been set equal to 500000 euros and this choice can be motivated because data commonly
available for classi�cation purposes are selected with similar criteria (for example the well
known AIDA data provided from the Bureau van Dijk Electronic Publishing). Considering
a set of BE has not been possible because of the presence of too less defaulter events in that
set of business.
From each set of �rms we have selected a training set and we have built some standard classi-
�ers (logit models, decision trees, discriminant analysis methods). After, we have evaluated
the performances of the estimated models in classifying new sample points belonging to a
test set selected from the SMEs subpopulation.

In a �rst analysis we have ignored the class imbalance by randomly partitioning the sets
of business in a training set and a test set.

The left panel of Figure 3 compares the ROC curves built by estimating a logit model on
the 4 training samples and evaluating it on the SME test sets. Analogue results derive from
the application of di�erent classi�cation models as linear discriminant analysis or decision
trees.

The models estimated by using the MIE, BR and SMEs training samples perform just
slightly better than the random choice. Better results derive from the use of the models
built on the sample selected from A. Our analysis suggests that these results derive from the
unequal conditions of the comparison: the 4 models have been estimated by using di�erently
sized training sets ( 75% of the size of the population from which we have drawn the sample)
with a di�erent rate of imbalance between the classes. In fact, besides the proportion of
rare events is very close to zero in each set of business, the A set is more than twice sized
than the SMEs set and it has an higher rate of positive examples than the other sets. These
di�erences a�ect the classi�cation and hinder the sample selection e�ects.

Therefore, we have conducted a comparison between the models on equal terms, by using
the same sample size as well as the same proportion of events. The selection of balanced
training samples from the four sets has been not possible because the sample sizes would
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Fig. 3. ROC curves relative to the accuracy of the logit models on the SMEs. In the left
panel the training sets have been randomly selected. The central panel refer to models built
on equally sized and balanced training sets. The right panel displays the ROC curves obtain
after applying ROSE. Below, the p values obtained by testing the di�erence between the
areas under the curves. A Bonferron-Holms correction has been applied to take into account
the multiple comparisons.

have been too small. Instead, we have selected samples with 25% of positive example and
75% of negative ones.

The central panel of Figure 3 suggests that our conjecture about the contradictory results
was right. When using equally sized and more balanced training sets, the accuracy of the
models downsizes, except for the model built on the SMEs. Hence, the e�ect of sample
selection arises resulting in less accurate model estimated on samples di�erent from the target
population. However, in order to compare the models other things being equal, the sample
size has been considerably reduced, thus leading to wonder if results may be considered
reliable. In fact, besides the area under the ROC curve corresponding to the SMEs model
is larger than the others, the di�erence is not signi�cant (a Mann-Withney statistic based
test has been used to test the di�erence between the areas under the ROC curves according
to Hanley and McNeil (1982)).

4. Generating new events prior to sample selection eval-

uation

In the previous paragraph we have highlighted the risk of building models based on
samples selected from a population di�erent from the target one, but this problem is strongly
related to the presence of a rare class. In fact, the skewer the class distribution is, the more
hidden the sample selection e�ect is. Hence, applying a remedy against the problems caused
by the class imbalance, prior to any deeper analysis of the sample selection e�ects, turns out
to be necessary.

However, when the distribution of the classes is extremely skewed, even the most widespread
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remedies for class imbalance have known drawbacks (McCarthy et al., 2005). One problem
with the application of cost sensitive algorithms is that speci�c cost information is usually
not available. Methods of undersampling may discard potentially useful data thus reducing
the sample size (as seen in the previous section), while over-sampling may increase the like-
lihood of occurring over�tting, since it is bound to produce ties in the sample, especially as
the sampling rate increases.

A recent strategy to cope with imbalanced learning has been proposed by Menardi and
Torelli (2010). Aimed at balancing the distribution of the classes, the approach rests on
the same idea of over/undersampling methods, but the imbalance is managed by generating
new synthetic data to be used for training the classi�er. This strategy may be referred to as
ROSE (Random Over Sampling Examples).

Each sample point may be described by a vector x = (x1, . . . , xp) of observed covariates
and a label class y belonging to the set {Y0, Y1}, where Y1 denotes the rare class and Y0

the frequent one. In classi�cation problems, learning methods are basically characterized
by an implicit or explicit di�erent approach to the estimation of the unknown conditional
probabilities of belonging to the classes. Accordingly, the classi�cation rule allocates a
sample unit to the class Yj, j = 0, 1 if the estimated conditional probability Pr(y = Yj|x) of
belonging to that class exceeds a �xed threshold, that is

Pr(y = Yj|x) =
f(x|y = Yj) · Pr(Yj)

f(x)
> k, 0 < k < 1 (1)

with Pr(Yj) the probability of the class Yj and f the probability density function of x.
Here, x is supposed to be continuous. Usually the threshold is 1

2
but in a class imbalance

framework it may be set di�erently. See for details, Prentice and Pyke (1979).
In order to obtain a balanced sample, ROSE aims at generating new examples from

both the unknown f(x|Y0) and f(x|Y1). The generation of data from both the classes
di�erentiates such approach from other existing remedies for class imbalance, allowing for
creating a previously unobserved sample to be used for training the model. The originally
observed data may be thereby employed to evaluate the model's accuracy.

Let {(x1, y1), . . . , (xn, yn)} be the training set used to perform the classi�cation, with xi

the vector of covariates and yi ∈ {Y0, Y1}, the label class. Without loss of generality, we
may consider that nj < n is the size of the class Yj and the �rst {(x1, y1), . . . , (xr, ynj

)} data
belong to the rare class. The ROSE procedure for generating one example from class Yj

consists of two steps:

i. select xi ∈ {x1, . . . ,xnj
}, with probability P (xi) = 1

nj

ii. sample x from KHj
(xi), with KHj

a probability distribution centered at xi and Hj

a matrix of scale parameters. KHj
(xi) is usually chosen in the set of the symmetric

distributions (e.g. K is a Gaussian distribution) and it is an estimate of the local
density of xi.

Essentially, we select an observed data belonging to one class and generate a new data in its
neighborhood, where the width of the neighborhood is determined by Hj. It is worthwhile
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to note that:

f̂(x|y = Yj) =

nj∑
i=1

P̂ r(xi)P̂ r(x|xi)

=

nj∑
i=1

1

nj

P̂ r(x|xi)

=

nj∑
i=1

1

nj

KHj
(x − xi)

which entails that the generation of events according to the ROSE procedure corresponds to
the generation of data from the kernel density estimate of f(x|Yj). This desirable property
allows us to consider Hj as a smoothing matrix and to choose it proportional to the solution
of one of the several methods of bandwidth selection proposed in the literature (for a review,
see for example Wand and Jones (1995.)).

We have applied the ROSE strategy to our real data set in order to generate the attributes
of new arti�cial �rms belonging to the described subpopulation MIE, SME, BR, A. Given
the new synthetic balanced sample, we have repeated the experiment of comparing the
performance of the models in detecting the SME default event. Results are displayed in the
right panel of Figure 3. While models trained on the samples selected from MIE, BR and A
still report a poor accuracy, classi�cation performed by using arti�cial samples drawn from
the target population show signi�cantly improved results, thus con�rming our conjecture
about the existence of a sample selection e�ect, hidden by the unmbalanced distribution of
the classes.

5. Concluding remarks

In this work we have empirically analyzed how di�erent criteria of sample selection may
a�ect the accuracy of a classi�cation model in presence of rare classes. An application of
several classi�cation techniques to simulated data has shown the risk of building models on
non random samples, but it has also pointed out that this problem is strongly related to
the eventual imbalance of the classes. In fact, the skewer is the class distribution, the less
accurate are the models and the more hidden is the sample selection e�ect. An application
to real data aimed at separating defaulter �rms from non defaulter ones has con�rmed the
described behavior.

A recent solution to the class imbalance problem consisting in generating new synthetic
examples from the rare class has been considered and its application to the real data set has
determined an increased accuracy of the classi�cation as well as the evidence of the sample
selection e�ect.

A deeper insight to this framework will be the focus of future research. In particular,
our purpose is to propose possible remedies after exploring how the sample selection e�ects
vary with di�erent degrees of dependence between the response variable and the variables
according to which the sample selection is done and how the problem is related to the concern
of model selection.
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