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A Symmetrical
Two-Phase Stefan Problem
with Supercooling

PEDRO R. MARANGUNIC (*)

SUMMARY. - We consider a two-phase Stefan problem in cylindrical
symmetry with supercooling of the liquid phase, when the melting
temperature is supposed to be a constant and zero flux conditions
are imposed on the fired boundaries. We perform an a priori
analysis of the possibility of continuing the solution to arbitrarily
large time intervals, and we relate the occurrence of each possible
case with the value of an energy integral involving the initial data.
Analogous results are achieved considering superheating of the
solid phase instead of supercooling of the liquid one, or spherical
— instead of cylindrical — symmetry.

1. Introduction

The freezing of a supercooled liquid and related problems have been
studied by many authors, mostly in plane symmetry. In doing so,
they have dealt with certain one-phase free-boundary problems for
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the heat equation in one space dimension, releasing the sign restric-
tions on the data and the latent heat usually required in the Stefan
problem (see the review [14] ; see also [2] - [7], [13], [15], [16], and
the references quoted therein). In particular, they have analyzed
the special behaviour usually known as blow-up (see [8] - [10] for a
deeper insight). Furthermore, Fasano and Primicerio have found in
[6] interesting relations between the initial data and the occurrence
of each possible type of solution.

In [1] , Andreucci extended the ideas and techniques of [6] to the
case of cylindrical (eventually spherical) symmetry.

In [12] , we adapted the ideas of [6] to the two-phase case with
plane symmetry. Subsequently, Turner extended the results of [2] to
the same case ([17]). The purpose of the present work is to accom-
plish the adaptation of [12] to the two-phase case with cylindrical (or
spherical) symmetry.

Indeed, it is possible to analyze simultaneously the three usual
types of symmetry, by using the unified expressions for the heat
operator L , its adjoint L* and Green’s Theorem in a suitable domain
Dy , namely:

Lf=Af = fo=r ™0™ f)r = fo= oot Tl = for (1)

* m m m
Lg:grr—(—g) +9t=9rr — —9r + 9+ 59, (2)
T T T T

Z/(gLf—fL*g) dr dr =

¢ [radr+ (19— For+ 1) ar).

0Dy

(3)

where m = 0,1,2 for planar, cylindrical and spherical symmetry,
respectively.

Nevertheless, for the sake of brevity and definiteness here we will
start with the cylindrical case. In particular we will study, in the
cylindrical region of R3 defined by ro <7 <7y, where 0 < r¢ < 7,
a two-phase Stefan problem with supercooling of the liquid phase,
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assuming that the melting temperature is a constant (say 0) and the
fixed boundaries are isolated.
To be specific, given the data

9060[710’(]']7 ¢€C[a,r1], (,07_’_&0, Q/)?_éoa (4)

with a € (rg,71), let us consider problem (P) which consists of finding
(T, s(t),u(r,t),v(rt)) such that:

a) T > 0;
b) s € C[0,T], s € C*0,T), ro < s(t) <ry for 0 <t < T;

c¢) u(r,t) is a bounded function in 7 < r < s(¢), 0 <t < T,
continuous on the same region except perhaps at the points
(s(0),0) and (s(T),T); uy (r,t) is continuous for rg < r <
s(t), 0 <t < T; upp, ug are continuous for o < r < s(t),
0<t<T;

d) v (r,t) satisfies similar conditions in s(¢) <r <r;, 0 <t < T}

e) u, v, s satisfy

Lu=0in DY = {(r,t) : 7o <7r < s(t), 0 <t < T},

(liquid phase), ©)
Lv=0in DY ={(r,t): s(t) <r<r,0<t<T}

(solid phase), (6)

5(0) = a, (7)

w(r0)=¢(r), ro<r<a, (8)

v(r,0) =4 (r), a<r<r, (9)
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v (r,t) =0, 0<t<T, (11)
u(s(t),t) =0, 0<t<T, (12)
v(s(t),t)=0, 0<t<T, (13)

v (s(t),t) —ur(s(t),t) =5(t), 0<t<T. (14)

REMARK 1.1. We exclude the situations ¢ = 0 or ¥ = 0, because
they correspond to the one-phase problem.

As usual, from Green’s identity it is easily derived an useful integral
formulation of Stefan condition (14). In our case, if (T, s,u,v) is a
solution of (P), we have the following energy balance formula:

s(t) T1
sQ(t)—T(Q)+2/Tu(r,t) dT+2/7"’U(T,t) dr=0Q, 0<t<T,

To s(t)
(15)

a 71

where Q@ = a® — 13 +2 [ro(r)dr+ 2 [ ri(r)dr.
T0 a

Since we are interested in the case of the supercooled liquid, we

add to (P) the following assumptions:

w(r) <0, ro <r<a, (16)

P (r) <0, a<r<r. (17)
We assume also this condition:

there is no constant § € (0,a — rg)

18
such that ¢ (r) < -1, a—40 <r<a. (18)

Indeed, (18) is just a necessary condition (see similar ideas in [7] or
[1]) for the existence of solutions of (P).

By working as in [15], [5] and [1], even under flux conditions
more general than (10) and (11), it can be proved a trichotomy type
result: if a solution of (P) exists, then one of the following three
cases occurs:
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(A) The problem has a solution with arbitrarily large T

(B) There is a constant Ty > 0 such that lim, 1y 8 (t) = ro;

(C) There is a constant 773 > 0 such that lim, Ty s(t) > ro,
liminft_>T1— 5(t) = —o0;

corresponding to global existence, finite time extinction of the liquid
phase, and blow-up, respectively.
Moreover:

(i) (C) = u is continuous up to t =Ty, rog < r < limt—>T; s (t);
(ii) (C) = v is continuous up to t =T} , limt_)Tf s(t) <r<ry;
(iii) (B) = wv is continuous up to t =Ty, ro < r < 71.

In this paper we will discuss neither existence of solutions of (P) nor
the trichotomy’s theorem just mentioned. Here we will only look for
relations between the initial data and the occurrence of the three
cases, with the hope of providing a simple test to predict the type of
solution.

This a priori analysis is made in Sec. 2. The case of an superheated
solid (eventually in contact with an supercooled liquid) is considered
in Sec.3. Finally, in Sec.4 we briefly comment the results for spherical
symmetry.

2. A priori analysis of the solution’s type

Recall that we are analyzing problem (P) in cylindrical symmetry
(i.e. with m = 1).

PROPOSITION 2.1. If (T, s,u,v) solve (P), then
(i) Q <a®>—r3;
(11) w <0 in D} and v < 0 in Df;
(#ii) s is strictly decreasing and ro < s(t) <a, 0 <t <T;

(iv) 2(t) > +Q,0<t<T.
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Proof. Obviously @ < a2—7‘8 , but Q = a2—r§ Sp=9Yp=0&
(s=a,u=v=0).

Part (ii) is a consequence of the (strong) maximum principle.
Hence, by using (14) and the Vyborny - Friedman theorem ([11, p.
49]) , (iii) is obtained. From (15) and (ii), (iv) follows. O

PROPOSITION 2.2. If (P) has a solution, then

(i) (B) = Q <0;

(i) (A) =0<Q<a®—rd and limy_, o s (t) = (rf + Q)2
Proof. In case (B), we apply in (15) Lebesgue’s bounded convergence
theorem for ¢ — T , and @ < 0 follows. But ) = 0 is immediately
excluded because of ¥ # 0 and the maximum principle. In case (A),
it can be shown (by proving a suitable comparison lemma as in [6]

or [1]) that u and v tend uniformly to zero as ¢ — +oo . Then, from
(15) we obtain limy, o0 s% (t) = r¢ + @, whence @ > 0. O

We want to get some kind of converse for Prop. 2.2 (ii). In order
to do so, after Prop. 2.2 (i), our aim is to exclude (C).

LEMMA 2.3. Let (T,s,u,v) a solution of (P) such that s(T~) =
limy - s(t) > ry . Let d > 0, a € (0,T), z1 € (0,1), 20 > 0
such that d < min{s (T~) — ro,r1 — a},

u (r,t) > —z; in the closure of D}, ﬂ E,, (19)
and

v (r,t) > —25 in the closure of D}, ﬂ E,, (20)

where Eo = {(r,t) :a <t < T,s(t) —d <r < s(t) +d}. Then there
exists a constant K > 0 such that

s$(t)>-K, a<t<T.

Proof. By decreasing d if necessary, we can also assume with no loss
of generality that

d - max{|u,(r,a)| : r € [ro, s(e)]} < 21, (21)
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and
d - max{|v,(r,a)| : 7 € [s(a), 1]} < 22. (22)
For any € € (0,7 — «) we define o, = inf{s (¢) : t € (o, T —€)},
AL ={(rnt)ra<t<T —es(t)—d<r<s(t)},

and
B, ={(rt):a<t<T—¢s(t) <r<s(t)+d}

In the closure of the domain A{, we compare u with the function
wi (ryt) = —21(1—e )71 (1 —exp[b(r — s(t))]) , where b is a positive
constant to be determined.

It is easy to prove that wq (r,t) < u(r,t) in the parabolic bound-
ary of AS, because of (12), (19), (21) and convexity arguments (note
that Wirr > O).

Now, we choose b = —o, and obtain

-1
Lwy = 21 (1 - e—bd) eb(r=s(t)) [b(b +5(t) + g] > 0 in AS.

At this point, the maximum principle yields w; (r,t) < u (r,t) in A,
and

ur (s (t),1) < wip (s(t),t) = %{f_bd

= —210¢ [1 — €Xp (Ued)]_l :
Now, we compare v with the function

ws (r,) = %(r—s(t))(T—s(t) — 2d)

in the closure of Bf,. We have

2
Ly = 2 [(r = () + (r = d) 7 (r — 5 (1) ) 4(2)] > 0
in BS; working as in the liquid phase we obtain v, (s(t),t) > —%,

whence § (t) > —% + z10.[1 — exp(od)] L.

Then o, > —% + z10:[1 —exp(o.d)]~!, and the conclusion easily
follows by taking K = —f3, where 3 is the (unique) zero of the strictly
increasing function f(z) = z — z;z(1 — %)~ + %. O
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REMARK 2.4. We have used $(t) < 0 to prove Lwy > 0, but not
when verifying that Lw; > 0. Note that condition (16) (and then § <
0) has not been essential in obtaining similar results for the one-phase
problem. In fact, in [6] and [1] they have used inf {s () : t € (0,7)}
instead of s(7"7), and then reasoned as follows: if o, > 0 for all
€ € (0,7 — a), the conclusion is obviously true; on the other hand,
it suffices to make a convenient comparison in Ag,.

We shall exhibit a second way of working in B, to prove Lemma 2.3.
This applies under the additional hypothesis z1 + 20 < 1 . If g, >
—ﬁ for all € € (0,7 — «), there is nothing to prove. Then we can

suppose that there is a small ¢y such that

O < —

5 (;) for all € € (0,¢) . (23)
For any € < €y we compare v in the closure of the domain B, with the
function wy = —2y (1 — eCd)_l (1 —explc(r—s(t))]), where ¢ is a
suitable negative constant, say ¢ = g.. Thus, Lwy = 29 (1 — ec”l)_1 .
e“r=sWc[(c+ 1/r) + 5 (t)] > 0 in BE, because of (23). As before, we
have used 5 (t) < 0 for proving Lwy > 0. Now, we have v, (s (t) ,t) >
220 [1 — exp (oed)] ™}, then § (t) > (21 + 22)0¢[1 — exp(oed)] L, from
which we easily obtain o, > é log (1 — 21 — 22).

Note that z; + zo < 1 is neither an illogical nor an excessive
assumption. Indeed, taking into account the continuity of v in an
adequate compact set (the closure of DY. (] E,) or even the maximum
principle, we can reduce 2z, by redefining d.

REMARK 2.5. If (C) occurs, the isotherm u = —1 exists and reaches
the free boundary at t = T.

REMARK 2.6. If ¢ > —1 we have u > —1 (because (18) excludes
@ =—1). Thus, (C) cannot occur.

Now then, we look for conditions more general than those of Re-
mark 2.6, ensuring we are in position of using Lemma 2.3. As in [6]
(and later in [1] and [12]), here we add the following useful hypoth-
esis:

(H) The equation ¢ (r) = —1 has at most one root in [rg, a;
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or the somewhat weaker:

(H’) There is no triple (rf,r/,75) with ro < rf < r/ < rj < a, such
that

p(r) < -1 [respectively ¢ (r7) > —1],
p(ri)e(rz) <1 [>1].

LEMMA 2.7. Let (T, s,u,v) solve (P). If @ > 0 and ¢ satisfies (H),
then: either there are no points in DY where u(r,t) = —1, or the
isotherm u = —1 is separated by a positive distance from r = s (t)
for allt € [0,T] such that s (t) > ro.

Proof. Since @ > 0 excludes (B), it is worth noting that the inequal-
ity s (t) > 7o is satisfied even for t = T'. After Remark 2.6, if ¢ > —1
there is nothing to prove. In the other case, let us note however that
the average temperature in the liquid fase is always greater than —1,

because
a

Q20:>P5a2—r§+2/rg0(r)dr>0
70

and then

a

1
(@ —1D) /27rr<,0(7") dr > —1;
70
for t > 0 we have
s(t)
s2(t) — 12 +2 / ru(r,t)dr >0,

To

whence
s(t)
1
— [ 2aru(r,t)dr > —1. 24
W(SQ(t)_Tg)/ (r,1) (24)
7o
Now, we consider the isotherm u (r,t) = —1 originating from ¢ = 0,

which is unique because of (H) and the maximum principle. By using
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(H) again, we see that if u (7,2) = —1, then u (r,t) < —1 forr < 7
and u (r,t) > —1 for r > 7. Then, from (24) we obtain the thesis for
allt < T. Torule out u(s(T~),T) = —1, it suffices to take the limit
for t — T~ in (24) and recall once more the maximum principle. O

REMARK 2.8. Lemma 2.7 remains valid, with minor changes in the
proof, if we suppose (H’) instead of (H).

PROPOSITION 2.9. If (H’) is satisfied, then (C) = Q < 0.

Proof. If Q > 0, then the thesis of Lemma 2.7 is true. Thus, it is
possible to apply Lemma 2.3, excluding (C). O

Therefore, we have completely proved the following

THEOREM 2.10. If ¢ satisfies (H’), then
(A) & 0<Q<ad®—rd

Thus, we have @ < 0 iff either (B) or (C).

Next we will see that it is impossible to discriminate between
(B) and (C) only by the value of @; they also depend on the initial
configuration (y¢,1). Roughly speaking, (B) and (C) “share” each
value of ) belonging to the interval (—oo,0). This fact contrasts the
one-phase problem and shows that the presence of a solid phase at
negative temperature (instead of v = 0) can modify substantially the
behaviour of the free boundary.

LEMMA 2.11. Assume that ¢ (r) > —M in [a,r1] for some M > 0.
If Q < —M (r? —r3), then (C) occurs.

Proof. The fact that < 0 excludes (A). In case (B) we proceed as
in the proof of the Prop. 2.2 (i) to get a contradiction:

T1

Q= 2/?"11(1", Ty )dr > —M(rf —r}).
To
O
% and noting that —M > —Kr in [rg,71], we can
modify the preceding proof to conclude that if @ < —%K (ri’ — 7"8),
then (C) occurs.

By choosing K =
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THEOREM 2.12. For each @ < 0 there ezists two pairs (p1,11) and
(p2,12), both corresponding to Q, such that

(i) (p1,%1) produces a solution of type (B);

(ii) For (p2,12), (C) occurs.
Proof. Given @) < 0, we can choose (g1, 1) satisfying (4), (16)-(17),
such that ¢ (r) > —1 in (r¢,a) and

a T1
Q=a’ —7"(2)+2/7‘<p1 (r)dr+2/r1p1 (r)dr.
T0 a

For instance ¢1(r) = 5%, ¥1(r) = —a(r — a), with
(@ — 7o) (2a + o) — 3Q

(r1 —a)?(2r1 +a)

Then (B) occurs, and thus (i) is proved. The other part is an ele-
mentary application of Lemma 2.11.

o =

O
REMARK 2.13. Note that we have proved the Theorem 2.12 without
using (H’).
When @ < 0, one may try to look for information through the liquid
phase energy, as in the one-phase problem. We consider
s(t)
Q1 () = 52 (1) —r§+2/ru(r,t)dr, 0<t<T

70
a T1
and recall P = a®> — 12+ 2 [ro(r)dr = Q — 2 [ r4 (r)dr; then

7o
@1 (0) =P.

The global heat balance equation (15) indicates that the energy
Q is a constant with respect to time. Is the same true for )1 7 By
introducing a slight modification in the proof of (15), we obtain the
heat balance equation in the supercooled region:

¢
Qi(t) =P+ 2/8(7‘)’07-(8(7'),7')d7', 0<t<T. (25)
0
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The Vyborny-Friedman theorem implies that Qi (t) < @1 (0) = P,
0 <t <T. Moreover:

t
(1) /S(T)UT(S(T), T)dT is a decreasing function in (0,7’).
0

t2
(il) Qi (t2) =Q1(t1) +2 [s(r) v (s(7),7)dr < Q1 (t1)
t1
o<t <ta<T.
Therefore, the next two propositions are trivial.
PROPOSITION 2.14. If (B) occurs, then:
(i) P >0,
To
(ii) Q1 (t) = —2/3 (1) v, (s (), 7) dr > 0 for all ¢ € 0,Tp),
t
(iii) Q1 (Ty ) =0,
s(t)
/ 2rru (r,t) dr > —1.

To

1
(iv) the average
s

(82 () —13)
PROPOSITION 2.15. If P <0, then (C) occurs. Moreover,
(i) Q <0,

(’LZ) Ql(t) <0, 0<t< T,

s(t)
/ 2rru (r,t) dr < —1.

To

(iii) the average

m (5% (t) — )

REMARK 2.16. (i) Considering the influence of the negative tem-
perature in the solid phase, it is natural that the one-phase result
P < 0 = (C) remains valid for the two-phase problem. (ii) Owing
to the same influence, now P = 0 = (C), despite P = 0,9 = 0,
(H) = (B). (iii) The case P > 0 has been connected to (A) when
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1 = 0. But in the two-phase problem the type of solution depends
in the first place on the value Q — P = 2 f r1) () dr to check whether

@ < 0, and then on the whole profile (cp, ).

We end this section by mentioning that the role played by the level
curves u = —1 has been the same both in the one-phase problem as
in the two-phase one.

3. The case of an superheated solid

In this section, we initially remove the conditions (16) and (17) and
assume

o(r) >0, ro<r<a, (26)

P(r)>0, a<r<r. (27)

Since this case is entirely similar to ¢ < 0, 1 < 0, with imaginable
conclusions, we shall confine ourselves to comment that the proofs
of Sec.2 remain essentially valid and the isotherm v = 1 plays in the
superheated solid the same “critical” role as the isotherm v = —1
did in the case of the supercooled liquid.

We now put an superheated solid in contact with an supercooled
liquid, that is we retain (27) and suppose (16) instead of (26). As-
sume also (18) and this analogous condition:

there is no constant § € (0,71 — a)

such that ¥ (r) > 1, a <r<a+6. (28)

We define T* = sup { T' > 0 : there exists (7 s, u,v) solving (P)}.
In our setup it is not easy to analyze the problem, because
e 5(t) can be a non monotone function,
e both phases can have a “critical” isotherm,
e () may assume any real value.

Moreover, there are more than three possible kinds of behaviour,
namely
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(A) Global existence, i.e. T* = +00.

(Biest) Finite time extinction of the liquid phase, i.e. T* < +oo0 and
liminf;, ,7.- s(t) = rp.

(Bright) Finite time extinction of the solid phase, i.e. T* < 400 and

limsup;_,7«- s (t) = 71.

C) Blow-up, i.e. T* < +o0, liminf, ,7u- s (t) > 7o, limsup, ;7= s (¢
t—T t—T
< r1, and limsup,_,7«- |$ (t)| = +oo.

Actually, we should examine a variety of possibilities in case (C), but
we will avoid to do so for the sake of brevity.

For the above reasons, we merely obtain partial conclusions, es-
sentially necessary conditions for some kinds of behaviour of the
solution (for more details, see analogous case in [12]), for instance:

(i) (A)= 0<Q<r?—rd

(i) (Biest) = Q=2 Tflrv(r, T*7)dr > 0.

To

r
(iii) (Brignt) = Q= r? — 7‘(2) +2 f ru(r, T*)dr < r? — 7"8.
o

(iv) @ <0 = We are either in case (C) or (Byignt)-

v) Q@ >1? —rZ = We are either in case (C) or (Bjst)-
1 0 f

4. The problem in spherical symmetry

As far as the spherical symmetry is concerned, we have to use (1)-(3)
with m = 2. Then, instead of (15) we obtain
s(t) 1
s (t)—r8+3/r2u (r,1) dr+3/7"211 (r,t)dr =R (29)
70 s(t)

a 71
where R = a®—r3+3 [ r%p (r) dr+3 [ 7?4 (r) dr, that is, the energy

70 a
balance equation within a factor of %7‘(’.
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By using (29) appropriately, all the results of Sec.2 and 3 can

be adapted in a very elementary way to the spherical symmetry
case. We only list a few properties corresponding to the assumptions

¢ <0,9<0,p#0, ¢ #0, namely:

(i

) R<ad—rd.

(i) (A) = lim s(t) = (r§ + R)'/5.

t—+00

(iii) B) = R<O.

(iv
(v

(vi

[1]
[2]

3]

[4]

[5]

[6]

8]

) If (H’) is verified, then (C) = R < 0.
) If o satisfies (H’), then (A) & O0< R<a®—r§.

) Theorem 2.12 of Sec.2 remains valid with R instead of Q.
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