MODULES WITH IRREDUNDANT SETS
OF COGENERATORS (*)

by A. HANNA an?d S. Knur1 (in Beirut) (**)

SOMMARIO. - It questa nota si prlovano tre teoremi. Il primo caratterizza gli R-
moduli che possiedono un ]mszeme minimale di cogeneratori come esten-
~sioni di moduli semtsemplzcz Il secondo fornisce un procedimento per ot-
tenere un insieme minimale di cogeneratori per i moduli suddetti. Il terzo,
- qualora lanello R sia commutativo e noetheriano, da una decomposizione
diretta di R-moduli che siaho estensioni essenziali del loro « socle ».

SUMMARY. - In this paper we prj‘ove three theorems. The first theorem charac-
terizes R-modules that possess an irredundant set of cogenerators as the
essential extensions of semi-simple modules. The second theorem provides
a process for exhibiting an ?rredundant set of cogenerators for such modu-
les. If the ring R is commutative Noetherian, then theorem 3 provides a
direct sum decomposition of R-modules that are essential extensions of
their socle.

1. Introduction.

All modules that are considered are assumed to be unitary left
“modules over a ring R with! 140. A system of generators of an R-
module M can be characterized as a non-empty subset G of M such
- that any homomorphism f: N— M with GS Im{ is an epimorphism.
Dualizing this concept, we call a non-empty subset C of an R-module
M a set of cogenerators of M if any homomorphism f: M ~> N with
CN Kerf=@ is a monomorphism. Since every non-zero R-module
M possesses a set of cogenerdtors, namely M—{0}, it is of interest to

i
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determine all R-modules M that possess an irredundant set of cogene-
rators, that is a set of cogenerators C such that every proper subset of
C fails to be a set of cogenerators of M.

An R-module is finitely cogenerated if it possesses a finite set of
cogenerators. Finitely cogenerated is not dual to finitely generated. The
correct dual is the Vamos notion of finitely embedded [3]. A finitely
cogenerated R-module is finitely embedded, but not conversely. However,
the two notions are equivalent in the important category of abelian
groups. They are not equivalent in the category of vector spaces over
an infinite field. But here the notion of finitely embedded coincides

with that of finitely generated. In case the basic field is finite all three
notions are equivalent.

2. Notations and Definitions.

The injective envelope of an R-module M is denoted by E (M)
and the socle by S (M). The set of simple submodules of S (M) is
partitioned as follows: the simple submodules S; and S, belong to
the same set of the partition if Si==S,. A homogeneous component of
S (M) is the sum of the simple submodules in a set of the partition.

This decomposes S (M) into a direct sum @ T: of 1ts homogeneous
iel

components T;.

Let A be a submodule of an R-module M, and let B be a nonempty
‘subset of M. The carrier A: B of B into A is the left ideal of R consisting
of all elements r such that *B €A. If xeM, we write 0 (x) for O: x.
If S is a right ideal of R, we let A:uS denote the submodule of M
consisting of all elements x such that Sx< A.

A commutative Noetherian ring R is called a local ring if the set

of non-units of R forms an ideal. It follows that a local ring has only
one maximal ideal.

3. Modules with Essential Socle.

“THEOREM 1. An R-module M possesses an irredundant set of coge-
nerators if and only if it is an essential extension of its socle S (M).

ProoF. Suppose first that C=(c:)iez is an irredundant set of
cogenerators of M. Then every non-zero submodule of M must intersect

C. In particular M is an essentlal extension of the submodule ZI Rci, -
1€
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generated by .C -and S(M)E 2 Rc;. Further c:¢Rc; for i%+j, for

eI .
- otherwise every homomorphism f with domain M such that f()+0
- implies f (c;)#0, and consequently C—{c;} is a set of cogenerators. It
follows that every submodule Rc; of M is simple, and hence S M)=
iel | ,
~ Conversely, suppose that M is an essential extension of its socle
S (M), and let {Rc;}ic 1 be the? set of simple submodules of M. Then
C=(c)ieris a set of cogenerators of M. To prove this, let f be a
homomorphism with domain ‘M such that f(c;)%=0 for every iel,
and suppose Ker f==0. Let (c)iesbe a subset of C such that the sum

2 Rcj is direct and S(M)= X Rc;. Consider a non—zero element
jed ‘ Ged

X=116,+12¢p + ot Cj“ES(M) N Kerf with a minimal number n
of non-zero components. Then n=2, and f (x)=0 implies f (r; c i )=
—f (2 Cj, +otrag). If te0 (f1 Cj, ), then O=f (¢ r, Cj1)= —f (trs cj, E...
i +tracj). The choice of n' implies that tr, ¢, +..+irc;, =0, It

follows that tr, Cj2=--.=trn canO, and therefore O (r;c)= N 0 (r Cie )-
. ; , k=2

Since 0 (r; ¢ ) is a maximal 'le!ft ideal of R, we must have 0 (r; cs)=
=0 (rics, +r2¢i, +.tra c,-n)=f0 (). Consequently, Rx is a simple
submodule of M and therefore ! f (x)#0. This contradiction shows that
C is a set of cogenerators of M. Since every non-zero submodule of
M must have a non-empty intersection with C and since CNRc={c}

for every ceC, the set of cogenerators C is irredundant.
|

CoRrOLLARY 1. Suppose that the R-module M is an essential exten-
sion of its socle. If C and C' lare irredundant sets of cogenerators of
M, then there is a one to one korrespondence between C and C' such
that if ¢ and ¢’ are corresponding elements then Rc=Rc',

This corollary follows immediately from the proof of the previous
theorem since both {Rc}.co and {Rc’}oreo represent the se of simple
submodules of M. A o

An R-module M is said to be cocyclic if it has a set of cogenerators
consisting of a single element. The following corollary generalizes
Theorem 3.1 -[1, p. 16] from abelian groups to R-modules.

-~ COROLLARY 2. An R-moduie M=0 is cocyclic if and only if it is
a submodule of an injective envelope of a simple R-module.
Let @ S: be a direct sum decomposition of the socle 'S (M) of
; iel H

|
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an R-module M into simple subhiodule's, and let x be a non-zero element

of S (M). x has only a finite number of non-zero components in @ Si;
. 1el |

I'et_thés'e be Xi 5w, Xi,. Rx is a simple submodule of M if and only if
0(x)= FI 0 (x;,) is a maximal left ideal of R. Sinte the left ideals
k=1 .

0(x:,) are all maximal, 0 (x) is maximal if and} only if 0 (x:)=...
«.=0(x;,). Thus every simple submodule of M is a submodule of

exactly one homogeneous component of S (M). Consequently, in order to
exhibit an irredundant set of cogenerators of an R-module M, we can
assume that all its simple submodules are isomorphic.

THEOREM 2. Suppose that the R-module M is an essential extension

of its socle S(M)= @ Rc; where the simple direct summands Rc;
tel

of S (M) are isomorphic. Suppose further that the index set I is well-
ordered; then an irredundant set of cogenerators of M is given by

,C={C;O+I‘1 ci1+ w7y Cin] W<ii< <y,
riGR, 0 (c,-o)=0 (I‘1 Cei)z =0 (I‘n Ciu) }

.PrOOF. We have to prove the following:
(i) Rc is a simple submodule of M for every ceC.

- (@) If Rx is a simple submodule of M, then Rx=Rc for
some ceC.

(iii) Rc==Rc’ for any two distinct elements ¢ and ¢’ of C.

(i) is clear, so suppose Rx is a simple submodule of M. Write
X=tnCi +11Ciytotraci, With < <..<in Then 0(x)=0(roc:)=
=0 (r; cii)::...=0 (rn cs, ). Since ¢i, €Rro Ci s there exists th such that
0 =troci . Hence tx=c; +trici +..4trnci, =c. Since ci, +0,
tx40 and Rx=Rtx is a simple submodule of M. Consequently, O (c;, )=
=0 (i cil)z...=0(trn ¢i, ). Thus ceC and Rx=Rec. This proves (ii).

Suppose finally that Rc=Rc’ where c=cCi Fricit.traciy
¢'=cj +s1¢+tsmey, with ii<ii<..<i, and ji<ji<..<jm There
exists f€R such that #c’=c. Since ¢;, +0, t¢0 (¢, )=0(s1 Cj )=
«.=0 (smcj,). This means that the components of ¢ and t¢’ are the
same. Thus {i, i1, ... , in}={jo, j1, <. » jm}. In particular n=m. The orde;
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[
ring of ir and j. implies then ithat io=jo, i1=j, ... , in=/j» Consequently
0, = Cj, ::thO, ri Cs,, = 1Sk Cjk if-OI’ k=1, ...,n. But ¢, .:tcjo lmphes
St ¢j, =tse cj, and hence ricy ;f:Sk cj, for k=1,...,n. Thus c=c".

We note that the above Theorem is formulated and proved under
the assumption of the axiom bf choice. If the index set I is at most
countable, the axiom of choice is not needed.

Throughout the remainder of this paper, the basic ring R will
be assumed to be commutative Noetherian.

THEOREM 3. Suppose that'the R-module M is an essential extension

of its socle S (M)= @ T: where the T; are the homogeneous compo-
tel .

nents of S (M). Then
(@ M= @ (MNE(Ty))

1el

(b) MNE(T)= U (0: uP¥) where each simple direct sum-

k=1 |
mand of T; is isomorphic to i{/P,-.

Part (a) of this theorem 1s prdved in [2, p. 111] for finitely em-
bedded modules over a left H-&ing. A ring R is a left H-ring if for any
two non-isomorphic simple left R-modules S; and S, Homgz (E (Sy),
E (S2))=0. Commutative Noetherian rings are H-rings, but not con-
versely. Part (b) is also proved in [2, p. 113] for finitely embedded
modules over a commutative Noetherian ring. However, the proof
given generalizes almost word by word to R-modules with an essential
socle. We therefore omit the proof of (b).

The proof of Theorem 3 ijs preceded by the following three lemmas.

|

LEMMA 1. Let P be a ’prfme ideal of R and x a non-zero element
of E (R/P), then O (x) is P-primary.

, Proor. Multiplication by l»c is a homomorphism from R to E (R/P)

with kernel 0 (x). Hence R/0 (bc) is isomorphic to a non-zero submodule
of E(R/P). Since E (R/P) is indecomposable, E (R/0 (x))=E (R/P),
so that 0 (x) is irreducible. In' particular O (x) is a primary ideal of R.
We shall show that it is P-primary. There exists seR such that
O0=%sx€R/P, whence O (sx)=P. Since 0 (x)E 0 (sx), we have 0 (x)EP.
Now let 7eP, and for each positive integer n let I, denote the carrier
0 (x): " of 7" into 0 (x). We have an ascending sequence I; €I, < ... of
ideals of R. Since R is Noetherian there exists a positive integer n
such that [,=In,.1=.. We want to show that r"€0 (x). Suppose the

1
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contrary, then 7" x is a non-zero element of E (R/P) and there exists
teR such that O=tr"xeR/P. Now t¢l,, for otherwise #"x=0. But
since every element of R/P is annihilated by every element of P, we
have #**1x=0, and therefore #"*'€0 (x), that is t€l.,1=I., which
is not so. Thus €0 (x), and therefore O (x) is P-primary.

COROLLARY. Let P be a prime ideal of R and x a non-zero element
of a direct sum @ E (R/P) of I copies of E(R/P). Then 0 (x) is P-
I ,

primary.

ProOOF. x has a finite number of non-zero components in the
direct sum. Let these be Xip 5o s Xy By Lemma 1, O (x;) is P-primary,
k=1, ..,n. Since finite intersections of P-primary ideals of R are P-

primary, 0 (x)= N O (x:, ) is P-primary.
k=1

LEMMA 2. Let P; and P, be tfuo distinct maximal ideals of R. If Q,
and Q, are respectively Py-primary and Prprimary, then Qi+Q;=R.

Proor. Since the ring R is Noetherian, there exist positive inte-
gers m and n such that P/""ESQ; and P;'EQ, If Pi"+P,"+R, there
would exist a maximal ideal P such that P™+P;*SP. But then
PSP and P,"SP, whence Pi=P=P, Thus P"+ P;"=R and hence
Qi+ Q:=R. :

LEMMA 3. Let R be a commutative Artinian ring and suppose that
the socle of R is a direct sum of n isomorphic minimal ideals S, ..., Sn,
n=1. Then R is a local ring.

Proor. Let P be a maximal ideal such that S;=R/P, i=1, ...,n.
Since R is an essential extension of S @ ... ® S., we have an inclusion
map R—E (R/P)® ... ® E (R/P) (n times). Let P’ be a maximal ideal
of R, then we have a non-zero homomorphism R — E (R/P’). By injec-
tivity of E (R/P’) this homomorphism can be extended to a homomot-
phism E(R/P)® ... D E (R/P)— E (R/P’). Thus there exists a non-
zero homomorphism f: E (R/P)— E (R/P’). Let x€E (R/P) be such
that f (x)==0. Then 0 (x) £0 (f (x))EP’. By Lemma 1, 0 (x) is P-primary.
Since R is- Noetherian, there exists a positive integer n such that
P"<S0 (x)EP’, and hence PEP’. Since both P and P’ are maximal,
P=P.

ProoF OF THEOREM 3. (a¢) Let x be a non-zero element of M.
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Then x ‘has only a finite number of non-zero components in @ E (T).
tel -

Let these be Xi,s i s ¥y, SO that lx ¥i +%i+..+x;, . All that we need
to show is that xi, €M for k=1, ..., n. Th1s is true if n=1. So suppose

that this is true for every nonzero element of M whose non-zero

components in @ E (T)) are lesé than n. By Lemma 1 Corollary, 0 (x4)
sel

and O (x:, ) are respectively ﬂ -prlmary and P; , -primary. Since P;,

and P;, are distinct maximal 1dea1s Lemma 2 1mphes that 0 (x, )+

+0(x, )=R. Write 1_u1+u2 with uleO(x, and uzeO(x,) Thenr

&, =t x: , and U x= Xi, +u x. +..4+u xi,. By the mduct10n hypo-

thesm, Xy, eM Hence x— —xi —33 +...+xi, €M, and the inductioin hy-

pothesis 1mp11es that Xiyy oo ,x.kEM. This completes the proof of (a).
An immediate consequence‘ of Theorem 3 (a) is

CoroLLARY 1. If the socle’ of an R-module M is a direct sum of
mutually non- zsomorphzc simple' submodules and if M is an essential
extension of its socle, then M is\a direct sum of cocyclic submodules.

The following result is a Well-known theorem in ring theory.

"COROLLARY 2. A commutatzbe Artmtan ring R is a finite direct sum
of local Artznzan rmgs l

PROOF Smce R is an essen’ual extension of its socle, Theorem 3 (a)
1mp11es R= @ (RNE(T)), where @ T; is a direct sum decompo-

tel : tel
S1t10n of S (R) into its 'homogen%ous components. I is finite and every
T is a finite direct sum of isomorphic minimal ideals of R. By Lemma 3,
the ideal RNE (T:) of R is a local Artinian ring. Hence R is a direct
finite sum of local Artinian rings.

COROLLARY 3. In a commutjative Artinian ring R there is a one to
one correspondence between the \maximal ideals of R and the classes of
isomorphic minimal ideals. In | particular every simple R-module is
isomorphic to a minimal ideal of R.

1
ProOF. If R=R; @ ... ® R, is a decomposition of R as a direct

Sum of local Artinian rings, then the maximal ideals of R are all of

the form Ri @ ... @ Ri1 @ P; @R,+1 @ ... ® R. where P; is the max-
imal ideal of R;, i=1,. | : '
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